Normalized defining polynomial
\( x^{18} - 4 x^{17} - 130 x^{16} + 324 x^{15} + 6719 x^{14} - 8266 x^{13} - 171338 x^{12} + 55872 x^{11} + 2262507 x^{10} + 650658 x^{9} - 14829653 x^{8} - 9556120 x^{7} + 41552340 x^{6} + 28027896 x^{5} - 41210584 x^{4} - 12003724 x^{3} + 11749096 x^{2} - 1285426 x + 19589 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5038744865236856504759367079404765184=2^{18}\cdot 19^{9}\cdot 131\cdot 137^{6}\cdot 68771\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 131, 137, 68771$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{59} a^{16} - \frac{9}{59} a^{15} - \frac{1}{59} a^{14} - \frac{14}{59} a^{13} - \frac{21}{59} a^{12} - \frac{15}{59} a^{11} + \frac{20}{59} a^{10} - \frac{4}{59} a^{9} + \frac{23}{59} a^{8} + \frac{27}{59} a^{7} + \frac{24}{59} a^{6} + \frac{16}{59} a^{5} - \frac{14}{59} a^{4} + \frac{3}{59} a^{3} + \frac{20}{59} a^{2} - \frac{22}{59} a - \frac{26}{59}$, $\frac{1}{1554173416226025880439343405791580122814497930289011148426433} a^{17} + \frac{2718794349526058466419862374050869490271444862994609448342}{1554173416226025880439343405791580122814497930289011148426433} a^{16} - \frac{231655140866480901003465857021617842109336663087736559745217}{1554173416226025880439343405791580122814497930289011148426433} a^{15} - \frac{429585665904128181368002824984153405662936481371593462483202}{1554173416226025880439343405791580122814497930289011148426433} a^{14} - \frac{3216969076480517281767603958567800188386899221366180330879}{26341922308915692888802430606636951234144032716762900820787} a^{13} - \frac{622569932819189993147557775025171614130206612382955067497488}{1554173416226025880439343405791580122814497930289011148426433} a^{12} - \frac{485061451489844048185775242581946294026216254971330740100620}{1554173416226025880439343405791580122814497930289011148426433} a^{11} - \frac{85260115250432716116547416637616001950011652377979820327023}{1554173416226025880439343405791580122814497930289011148426433} a^{10} + \frac{746023387482890794424166983689980182049756207399195200235109}{1554173416226025880439343405791580122814497930289011148426433} a^{9} - \frac{128319455810465647681409226431956055131666828884246700314164}{1554173416226025880439343405791580122814497930289011148426433} a^{8} - \frac{480189363661111705231997008599217514604611042302800141349433}{1554173416226025880439343405791580122814497930289011148426433} a^{7} - \frac{381383012077491059002210621731972832121553234135728978039584}{1554173416226025880439343405791580122814497930289011148426433} a^{6} - \frac{325218146325460813260395262210218345139631503322928479198389}{1554173416226025880439343405791580122814497930289011148426433} a^{5} - \frac{11675823508045077834703968833873524097399416024067762049091}{91421965660354463555255494458328242518499878252294773436849} a^{4} - \frac{38009093334060072489816824953896039677546889136390448031617}{91421965660354463555255494458328242518499878252294773436849} a^{3} - \frac{48578287368088126919347547435629745021838790665949804932992}{1554173416226025880439343405791580122814497930289011148426433} a^{2} - \frac{389628706390709377444591297451151679146409125988939921796722}{1554173416226025880439343405791580122814497930289011148426433} a + \frac{435837765781359404335896744287143158700794147362497199432297}{1554173416226025880439343405791580122814497930289011148426433}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2077788751140 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36864 |
| The 108 conjugacy class representatives for t18n691 are not computed |
| Character table for t18n691 is not computed |
Intermediate fields
| 9.9.1128762254528.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.8.4.1 | $x^{8} + 7220 x^{4} - 27436 x^{2} + 13032100$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 131 | Data not computed | ||||||
| $137$ | 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 137.2.1.2 | $x^{2} + 411$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 137.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 137.4.0.1 | $x^{4} - x + 26$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 137.8.4.1 | $x^{8} + 975988 x^{4} - 2571353 x^{2} + 238138144036$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 68771 | Data not computed | ||||||