Properties

Label 18.18.4886979270...9773.1
Degree $18$
Signature $[18, 0]$
Discriminant $3^{24}\cdot 7^{12}\cdot 251\cdot 4980583$
Root discriminant $50.69$
Ramified primes $3, 7, 251, 4980583$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T459

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1016, -7944, -12702, 15743, 38220, -13020, -45609, 7587, 29970, -4619, -11790, 2403, 2726, -777, -321, 132, 9, -9, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 9*x^17 + 9*x^16 + 132*x^15 - 321*x^14 - 777*x^13 + 2726*x^12 + 2403*x^11 - 11790*x^10 - 4619*x^9 + 29970*x^8 + 7587*x^7 - 45609*x^6 - 13020*x^5 + 38220*x^4 + 15743*x^3 - 12702*x^2 - 7944*x - 1016)
 
gp: K = bnfinit(x^18 - 9*x^17 + 9*x^16 + 132*x^15 - 321*x^14 - 777*x^13 + 2726*x^12 + 2403*x^11 - 11790*x^10 - 4619*x^9 + 29970*x^8 + 7587*x^7 - 45609*x^6 - 13020*x^5 + 38220*x^4 + 15743*x^3 - 12702*x^2 - 7944*x - 1016, 1)
 

Normalized defining polynomial

\( x^{18} - 9 x^{17} + 9 x^{16} + 132 x^{15} - 321 x^{14} - 777 x^{13} + 2726 x^{12} + 2403 x^{11} - 11790 x^{10} - 4619 x^{9} + 29970 x^{8} + 7587 x^{7} - 45609 x^{6} - 13020 x^{5} + 38220 x^{4} + 15743 x^{3} - 12702 x^{2} - 7944 x - 1016 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4886979270087636565363773739773=3^{24}\cdot 7^{12}\cdot 251\cdot 4980583\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $50.69$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7, 251, 4980583$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{508} a^{16} - \frac{2}{127} a^{15} - \frac{65}{508} a^{14} + \frac{87}{508} a^{13} - \frac{2}{127} a^{12} + \frac{77}{508} a^{11} - \frac{225}{508} a^{10} + \frac{36}{127} a^{9} + \frac{39}{127} a^{8} - \frac{251}{508} a^{7} + \frac{119}{508} a^{6} - \frac{28}{127} a^{5} - \frac{235}{508} a^{4} + \frac{233}{508} a^{3} + \frac{115}{508} a^{2} - \frac{7}{127} a$, $\frac{1}{508} a^{17} + \frac{125}{508} a^{15} + \frac{75}{508} a^{14} - \frac{37}{254} a^{13} - \frac{241}{508} a^{12} - \frac{117}{508} a^{11} + \frac{61}{254} a^{10} + \frac{19}{254} a^{9} - \frac{19}{508} a^{8} + \frac{143}{508} a^{7} + \frac{39}{254} a^{6} + \frac{139}{508} a^{5} - \frac{123}{508} a^{4} + \frac{201}{508} a^{3} + \frac{65}{254} a^{2} + \frac{15}{254} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4054614455.03 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T459:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 4608
The 96 conjugacy class representatives for t18n459 are not computed
Character table for t18n459 is not computed

Intermediate fields

3.3.3969.1, \(\Q(\zeta_{7})^+\), 3.3.3969.2, \(\Q(\zeta_{9})^+\), 9.9.62523502209.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$7$7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
7.9.6.1$x^{9} + 42 x^{6} + 539 x^{3} + 2744$$3$$3$$6$$C_3^2$$[\ ]_{3}^{3}$
251Data not computed
4980583Data not computed