Normalized defining polynomial
\( x^{18} - 162 x^{16} - 108 x^{15} + 10071 x^{14} + 13428 x^{13} - 311714 x^{12} - 611604 x^{11} + 5070909 x^{10} + 13203576 x^{9} - 40277844 x^{8} - 140567976 x^{7} + 100691908 x^{6} + 660320208 x^{5} + 295462464 x^{4} - 833087232 x^{3} - 729925632 x^{2} + 81102848 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(482171486214841046540312290712431689203712=2^{27}\cdot 3^{18}\cdot 41\cdot 199^{4}\cdot 229^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $206.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41, 199, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} + \frac{1}{8} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} + \frac{1}{8} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{32} a^{14} - \frac{1}{16} a^{12} - \frac{1}{8} a^{11} - \frac{1}{32} a^{10} - \frac{1}{8} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{3}{32} a^{6} - \frac{1}{2} a^{5} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{8} a^{2}$, $\frac{1}{12736} a^{15} - \frac{81}{6368} a^{13} - \frac{27}{3184} a^{12} + \frac{519}{12736} a^{11} + \frac{173}{3184} a^{10} + \frac{159}{6368} a^{9} - \frac{69}{3184} a^{8} - \frac{1203}{12736} a^{7} + \frac{339}{1592} a^{6} + \frac{1531}{3184} a^{5} + \frac{703}{1592} a^{4} - \frac{523}{3184} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{50944} a^{16} - \frac{81}{25472} a^{14} - \frac{27}{12736} a^{13} - \frac{2665}{50944} a^{12} + \frac{173}{12736} a^{11} - \frac{3025}{25472} a^{10} - \frac{69}{12736} a^{9} - \frac{10755}{50944} a^{8} - \frac{457}{6368} a^{7} - \frac{1653}{12736} a^{6} + \frac{1499}{6368} a^{5} - \frac{2911}{12736} a^{4} - \frac{1}{16} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{12143344609641232230972640100496998705305403224576} a^{17} + \frac{67768676541347016674634294203812979512755}{47434939881411063402236875392566401192599231346} a^{16} + \frac{203408228725528626973087689673765896153795215}{6071672304820616115486320050248499352652701612288} a^{15} + \frac{6555351891172385416718722121276396166116265317}{3035836152410308057743160025124249676326350806144} a^{14} - \frac{336797913194289475422716690612761364261352330601}{12143344609641232230972640100496998705305403224576} a^{13} - \frac{176498021126525858923027327810311841974542419827}{3035836152410308057743160025124249676326350806144} a^{12} - \frac{599354373606198090317301631563593628067781232561}{6071672304820616115486320050248499352652701612288} a^{11} + \frac{6689867223335020733012062306789955563515976315}{3035836152410308057743160025124249676326350806144} a^{10} + \frac{804776968190048611590580436562558823936597163261}{12143344609641232230972640100496998705305403224576} a^{9} - \frac{310831668669182303837467150476235072898114392329}{1517918076205154028871580012562124838163175403072} a^{8} + \frac{30834334337409077430246188084178760329091698203}{3035836152410308057743160025124249676326350806144} a^{7} - \frac{275208882265495742300394657204272316187195254805}{1517918076205154028871580012562124838163175403072} a^{6} + \frac{705829335794969591610945352772509135913269145889}{3035836152410308057743160025124249676326350806144} a^{5} - \frac{98823672817784970253513851115594832918345253815}{758959038102577014435790006281062419081587701536} a^{4} + \frac{56272702980958910762848288671177502891229510731}{189739759525644253608947501570265604770396925384} a^{3} - \frac{230032675887898158051528599668331163088016369}{476733064134784556806400757714235187865318908} a^{2} + \frac{58626766853692314698116393530154891497168594}{119183266033696139201600189428558796966329727} a + \frac{24665364690605781480325758124246012167596028}{119183266033696139201600189428558796966329727}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7223957139270000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1119744 |
| The 174 conjugacy class representatives for t18n930 are not computed |
| Character table for t18n930 is not computed |
Intermediate fields
| 3.3.229.1, 6.6.3356224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.9.4 | $x^{4} + 2 x^{2} + 10$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.8.12.23 | $x^{8} + 8 x^{5} + 4 x^{4} + 48$ | $4$ | $2$ | $12$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 2, 2]^{4}$ | |
| $3$ | 3.9.9.5 | $x^{9} + 3 x^{7} + 3 x^{6} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ |
| 3.9.9.5 | $x^{9} + 3 x^{7} + 3 x^{6} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.1.2 | $x^{2} + 246$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.6.0.1 | $x^{6} - x + 7$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $199$ | 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 199.3.2.2 | $x^{3} + 398$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 199.3.2.3 | $x^{3} - 796$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 199.4.0.1 | $x^{4} - x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 229 | Data not computed | ||||||