Normalized defining polynomial
\( x^{18} - x^{17} - 34 x^{16} + 29 x^{15} + 435 x^{14} - 311 x^{13} - 2671 x^{12} + 1551 x^{11} + 8348 x^{10} - 3867 x^{9} - 13016 x^{8} + 4608 x^{7} + 9365 x^{6} - 1994 x^{5} - 2859 x^{4} + 250 x^{3} + 224 x^{2} - 32 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47477585226700098686074966922953=73^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{73}(64,·)$, $\chi_{73}(1,·)$, $\chi_{73}(2,·)$, $\chi_{73}(4,·)$, $\chi_{73}(69,·)$, $\chi_{73}(65,·)$, $\chi_{73}(8,·)$, $\chi_{73}(9,·)$, $\chi_{73}(16,·)$, $\chi_{73}(18,·)$, $\chi_{73}(32,·)$, $\chi_{73}(36,·)$, $\chi_{73}(37,·)$, $\chi_{73}(41,·)$, $\chi_{73}(71,·)$, $\chi_{73}(72,·)$, $\chi_{73}(55,·)$, $\chi_{73}(57,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{12} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{1496110316163516441} a^{17} - \frac{40216416803060858}{498703438721172147} a^{16} + \frac{57643264178982656}{1496110316163516441} a^{15} + \frac{106137175703116900}{1496110316163516441} a^{14} + \frac{181624572251444800}{1496110316163516441} a^{13} - \frac{617611216924055161}{1496110316163516441} a^{12} + \frac{172520018343880942}{1496110316163516441} a^{11} + \frac{103406152484266816}{1496110316163516441} a^{10} + \frac{21938374372037048}{166234479573724049} a^{9} + \frac{60208375719954804}{166234479573724049} a^{8} - \frac{178810360112160035}{1496110316163516441} a^{7} - \frac{176693938482421166}{1496110316163516441} a^{6} + \frac{9338080058125579}{166234479573724049} a^{5} + \frac{398761835909844046}{1496110316163516441} a^{4} + \frac{611914114575342430}{1496110316163516441} a^{3} - \frac{165941408548999489}{1496110316163516441} a^{2} + \frac{434064321029204452}{1496110316163516441} a - \frac{454315324168616887}{1496110316163516441}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7147727796.24 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{73}) \), 3.3.5329.1, 6.6.2073071593.1, 9.9.806460091894081.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | $18$ | $18$ | $18$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 73 | Data not computed | ||||||