Normalized defining polynomial
\( x^{18} - 6 x^{17} - 27 x^{16} + 190 x^{15} + 252 x^{14} - 2292 x^{13} - 796 x^{12} + 13428 x^{11} - 1767 x^{10} - 40488 x^{9} + 17475 x^{8} + 60252 x^{7} - 39087 x^{6} - 37440 x^{5} + 32055 x^{4} + 5474 x^{3} - 8583 x^{2} + 1170 x + 181 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46572979962512449327252831469568=2^{18}\cdot 3^{27}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(468=2^{2}\cdot 3^{2}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{468}(1,·)$, $\chi_{468}(131,·)$, $\chi_{468}(133,·)$, $\chi_{468}(263,·)$, $\chi_{468}(419,·)$, $\chi_{468}(217,·)$, $\chi_{468}(347,·)$, $\chi_{468}(157,·)$, $\chi_{468}(287,·)$, $\chi_{468}(289,·)$, $\chi_{468}(35,·)$, $\chi_{468}(107,·)$, $\chi_{468}(61,·)$, $\chi_{468}(373,·)$, $\chi_{468}(313,·)$, $\chi_{468}(443,·)$, $\chi_{468}(445,·)$, $\chi_{468}(191,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a$, $\frac{1}{39010524908} a^{16} + \frac{834329549}{9752631227} a^{15} - \frac{289138815}{9752631227} a^{14} + \frac{1697494821}{19505262454} a^{13} + \frac{5637132}{9752631227} a^{12} + \frac{2416155741}{19505262454} a^{11} + \frac{1383688878}{9752631227} a^{10} + \frac{791155981}{9752631227} a^{9} + \frac{6478388935}{39010524908} a^{8} + \frac{2128506880}{9752631227} a^{7} - \frac{5312861147}{19505262454} a^{6} + \frac{900486255}{19505262454} a^{5} - \frac{18541662315}{39010524908} a^{4} - \frac{1590450069}{9752631227} a^{3} + \frac{1849456799}{19505262454} a^{2} - \frac{6929035897}{19505262454} a + \frac{3494656147}{39010524908}$, $\frac{1}{17453659938563372} a^{17} + \frac{92409}{17453659938563372} a^{16} - \frac{822533555064261}{4363414984640843} a^{15} + \frac{909925091225513}{4363414984640843} a^{14} - \frac{182267892537635}{4363414984640843} a^{13} + \frac{711308983658403}{4363414984640843} a^{12} - \frac{319308055547651}{8726829969281686} a^{11} - \frac{2109274278661427}{8726829969281686} a^{10} - \frac{2764877220777717}{17453659938563372} a^{9} - \frac{3945914508837501}{17453659938563372} a^{8} + \frac{1359389029907641}{4363414984640843} a^{7} - \frac{1247278694807258}{4363414984640843} a^{6} - \frac{774300805731609}{17453659938563372} a^{5} - \frac{111953959848717}{17453659938563372} a^{4} - \frac{499876232012653}{4363414984640843} a^{3} - \frac{1777782839265070}{4363414984640843} a^{2} + \frac{4303096601014443}{17453659938563372} a - \frac{2810580306773005}{17453659938563372}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13132231958.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), 3.3.13689.2, 3.3.13689.1, 3.3.169.1, \(\Q(\zeta_{9})^+\), 6.6.35978634432.1, 6.6.35978634432.2, 6.6.49353408.1, \(\Q(\zeta_{36})^+\), 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |