Normalized defining polynomial
\( x^{18} - 57 x^{16} + 1236 x^{14} - 13444 x^{12} + 82062 x^{10} - 297342 x^{8} + 651252 x^{6} - 843588 x^{4} + 593001 x^{2} - 173889 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46266103792173518288122441368600576=2^{20}\cdot 3^{32}\cdot 47^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{3}{8}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2} + \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} + \frac{1}{16} a^{2} + \frac{3}{16}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{16} a^{3} + \frac{3}{16} a$, $\frac{1}{48} a^{12} - \frac{1}{16} a^{8} - \frac{1}{12} a^{6} - \frac{3}{16} a^{4} - \frac{1}{4} a^{2} - \frac{7}{16}$, $\frac{1}{96} a^{13} - \frac{1}{96} a^{12} - \frac{1}{32} a^{9} + \frac{1}{32} a^{8} - \frac{1}{24} a^{7} + \frac{1}{24} a^{6} + \frac{5}{32} a^{5} - \frac{5}{32} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} + \frac{1}{32} a - \frac{1}{32}$, $\frac{1}{96} a^{14} - \frac{1}{96} a^{12} - \frac{1}{32} a^{10} - \frac{1}{96} a^{8} - \frac{5}{96} a^{6} - \frac{1}{32} a^{4} + \frac{13}{32} a^{2} - \frac{9}{32}$, $\frac{1}{576} a^{15} - \frac{1}{192} a^{14} - \frac{1}{192} a^{13} - \frac{1}{192} a^{12} - \frac{5}{192} a^{11} + \frac{1}{64} a^{10} - \frac{19}{576} a^{9} - \frac{5}{192} a^{8} + \frac{3}{64} a^{7} + \frac{13}{192} a^{6} - \frac{9}{64} a^{5} + \frac{15}{64} a^{4} - \frac{31}{192} a^{3} - \frac{21}{64} a^{2} - \frac{1}{64} a + \frac{3}{64}$, $\frac{1}{1291392} a^{16} - \frac{47}{13452} a^{14} + \frac{409}{107616} a^{12} - \frac{4067}{161424} a^{10} - \frac{529}{71744} a^{8} - \frac{1}{8} a^{7} - \frac{1}{152} a^{6} + \frac{1}{8} a^{5} - \frac{4375}{107616} a^{4} + \frac{1}{8} a^{3} - \frac{727}{17936} a^{2} + \frac{3}{8} a - \frac{57935}{143488}$, $\frac{1}{179503488} a^{17} + \frac{4607}{9972416} a^{15} - \frac{1}{192} a^{14} + \frac{26803}{9972416} a^{13} + \frac{1}{192} a^{12} + \frac{1224679}{89751744} a^{11} + \frac{1}{64} a^{10} - \frac{105263}{1869828} a^{9} - \frac{11}{192} a^{8} - \frac{27707}{507072} a^{7} - \frac{19}{192} a^{6} - \frac{5984801}{29917248} a^{5} + \frac{1}{64} a^{4} - \frac{1651899}{9972416} a^{3} + \frac{11}{64} a^{2} - \frac{4822185}{19944832} a + \frac{29}{64}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 851357937003 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $C_3:S_4$ |
| Character table for $C_3:S_4$ |
Intermediate fields
| 3.3.45684.2, 3.3.564.1, 3.3.45684.1, 3.3.11421.1, 6.6.2087027856.1, 9.9.13443473060864064.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.16.18 | $x^{12} + x^{10} + 6 x^{8} - 3 x^{6} + 6 x^{4} + x^{2} - 3$ | $6$ | $2$ | $16$ | $C_3 : C_4$ | $[2]_{3}^{2}$ | |
| $3$ | 3.3.5.1 | $x^{3} + 3$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ |
| 3.3.5.1 | $x^{3} + 3$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 3.6.11.9 | $x^{6} + 3$ | $6$ | $1$ | $11$ | $S_3$ | $[5/2]_{2}$ | |
| 47 | Data not computed | ||||||