Normalized defining polynomial
\( x^{18} - 8 x^{17} - x^{16} + 141 x^{15} - 219 x^{14} - 798 x^{13} + 2016 x^{12} + 1242 x^{11} - 6472 x^{10} + 2028 x^{9} + 7364 x^{8} - 5183 x^{7} - 2609 x^{6} + 2861 x^{5} - 66 x^{4} - 342 x^{3} + 35 x^{2} + 10 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45672975569536652017399733=7^{12}\cdot 53^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{879} a^{15} - \frac{121}{879} a^{14} + \frac{358}{879} a^{13} + \frac{94}{879} a^{12} - \frac{42}{293} a^{11} - \frac{367}{879} a^{10} - \frac{127}{879} a^{9} + \frac{238}{879} a^{8} - \frac{275}{879} a^{7} - \frac{125}{879} a^{6} - \frac{146}{879} a^{5} - \frac{90}{293} a^{4} + \frac{338}{879} a^{3} + \frac{176}{879} a^{2} + \frac{67}{293} a - \frac{178}{879}$, $\frac{1}{2637} a^{16} + \frac{1}{2637} a^{15} - \frac{47}{2637} a^{14} + \frac{113}{2637} a^{13} - \frac{964}{2637} a^{12} + \frac{376}{2637} a^{11} + \frac{514}{2637} a^{10} - \frac{313}{2637} a^{9} + \frac{340}{2637} a^{8} - \frac{566}{2637} a^{7} + \frac{1012}{2637} a^{6} + \frac{107}{293} a^{5} - \frac{124}{879} a^{4} - \frac{487}{2637} a^{3} - \frac{1}{293} a^{2} - \frac{854}{2637} a + \frac{845}{2637}$, $\frac{1}{349302644721} a^{17} - \frac{12558044}{349302644721} a^{16} - \frac{145809296}{349302644721} a^{15} - \frac{26213133067}{349302644721} a^{14} - \frac{129468013330}{349302644721} a^{13} - \frac{147145878911}{349302644721} a^{12} + \frac{125821304923}{349302644721} a^{11} - \frac{134846312755}{349302644721} a^{10} - \frac{90820306562}{349302644721} a^{9} + \frac{150472048723}{349302644721} a^{8} + \frac{174202739866}{349302644721} a^{7} + \frac{55224318194}{116434214907} a^{6} + \frac{28124147144}{116434214907} a^{5} - \frac{41057063404}{349302644721} a^{4} + \frac{57083000902}{116434214907} a^{3} + \frac{106611416344}{349302644721} a^{2} - \frac{47199582475}{349302644721} a - \frac{9435969875}{38811404969}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6981069.98989 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{53}) \), 3.3.2597.1 x3, \(\Q(\zeta_{7})^+\), 6.6.357453677.2, 6.6.7294973.1 x2, 6.6.357453677.1, 9.9.17515230173.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.6.7294973.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $53$ | 53.6.3.1 | $x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 53.6.3.1 | $x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 53.6.3.1 | $x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |