Normalized defining polynomial
\( x^{18} - 3 x^{17} - 54 x^{16} + 39 x^{15} + 1062 x^{14} + 876 x^{13} - 7833 x^{12} - 13659 x^{11} + 19524 x^{10} + 58964 x^{9} + 6090 x^{8} - 83943 x^{7} - 59961 x^{6} + 20367 x^{5} + 28668 x^{4} + 1902 x^{3} - 3390 x^{2} - 420 x + 19 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4556898638363530990028531552256=2^{12}\cdot 3^{31}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{20} a^{15} + \frac{1}{20} a^{14} - \frac{1}{4} a^{13} + \frac{1}{10} a^{12} - \frac{1}{10} a^{11} + \frac{3}{20} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{10} a^{7} - \frac{9}{20} a^{6} - \frac{3}{10} a^{5} + \frac{1}{10} a^{4} + \frac{1}{4} a^{3} - \frac{3}{10} a^{2} - \frac{1}{4} a - \frac{2}{5}$, $\frac{1}{340} a^{16} - \frac{2}{85} a^{15} + \frac{1}{340} a^{14} - \frac{9}{170} a^{13} + \frac{9}{68} a^{12} + \frac{41}{340} a^{11} + \frac{83}{340} a^{10} + \frac{1}{68} a^{9} - \frac{33}{85} a^{8} + \frac{29}{340} a^{7} + \frac{11}{68} a^{6} - \frac{109}{340} a^{5} - \frac{43}{340} a^{4} - \frac{161}{340} a^{3} + \frac{16}{85} a^{2} + \frac{1}{20} a + \frac{137}{340}$, $\frac{1}{3704563123397184604340} a^{17} - \frac{4238129363696297801}{3704563123397184604340} a^{16} - \frac{55874114308304040217}{3704563123397184604340} a^{15} - \frac{124150715001668591333}{3704563123397184604340} a^{14} + \frac{430405280648983257}{3069232082350608620} a^{13} + \frac{178993610281677339901}{1852281561698592302170} a^{12} + \frac{212699736752003802601}{926140780849296151085} a^{11} + \frac{3215937519712362579}{21791547784689321202} a^{10} - \frac{1655481404605607919297}{3704563123397184604340} a^{9} + \frac{89402122789958751305}{740912624679436920868} a^{8} + \frac{26756099891982243429}{54478869461723303005} a^{7} + \frac{224176877643655185717}{1852281561698592302170} a^{6} - \frac{855127407562247819197}{1852281561698592302170} a^{5} + \frac{364045086307928752841}{926140780849296151085} a^{4} + \frac{529424529259578603217}{3704563123397184604340} a^{3} + \frac{1772151926501314679637}{3704563123397184604340} a^{2} - \frac{207008987324236900606}{926140780849296151085} a + \frac{123237656423299298649}{740912624679436920868}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5162525491.39 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_4$ (as 18T30):
| A solvable group of order 72 |
| The 15 conjugacy class representatives for $C_3\times S_4$ |
| Character table for $C_3\times S_4$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.621.1, 6.6.425747664.1, 9.9.174583151469.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| 3 | Data not computed | ||||||
| $23$ | 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 23.12.9.2 | $x^{12} - 46 x^{8} + 529 x^{4} - 194672$ | $4$ | $3$ | $9$ | $D_4 \times C_3$ | $[\ ]_{4}^{6}$ | |