Normalized defining polynomial
\( x^{18} - 4 x^{17} - 226 x^{16} + 1239 x^{15} + 17796 x^{14} - 122072 x^{13} - 615875 x^{12} + 5622210 x^{11} + 7919185 x^{10} - 136592938 x^{9} + 68572508 x^{8} + 1749359753 x^{7} - 3181572325 x^{6} - 9919870666 x^{5} + 33412144863 x^{4} + 555578689 x^{3} - 112355912976 x^{2} + 154344883014 x - 65205568107 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4513742706914347629929046396252613513216=2^{12}\cdot 32009^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $159.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 32009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{12} a^{16} - \frac{1}{12} a^{15} - \frac{1}{12} a^{14} - \frac{1}{4} a^{13} - \frac{1}{4} a^{12} + \frac{1}{3} a^{11} + \frac{1}{12} a^{10} - \frac{1}{2} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} + \frac{5}{12} a^{5} + \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a + \frac{1}{4}$, $\frac{1}{7709828406793325657008729415587467650267216047627171337212995550384908} a^{17} - \frac{76539816248656870239691481785196198519486112576173063561483511753181}{1927457101698331414252182353896866912566804011906792834303248887596227} a^{16} + \frac{203725175778015672487157059923690606031691742086844263709941006832326}{1927457101698331414252182353896866912566804011906792834303248887596227} a^{15} + \frac{116986856863677101393570202853850437758303754352604182742688457063359}{642485700566110471417394117965622304188934670635597611434416295865409} a^{14} - \frac{178991180223555707824175979909456326706338588076309587196560903056309}{1284971401132220942834788235931244608377869341271195222868832591730818} a^{13} + \frac{209022283090076119621265914950851393577732375052243437964638157897669}{7709828406793325657008729415587467650267216047627171337212995550384908} a^{12} - \frac{2023520307271640036404832044971657688291526779124869437836651288944373}{7709828406793325657008729415587467650267216047627171337212995550384908} a^{11} - \frac{1177977479994553696467253479084832571546899256705305049612835203403635}{2569942802264441885669576471862489216755738682542390445737665183461636} a^{10} + \frac{1220020100919258657310569917689335698983602979642607384949908166616433}{3854914203396662828504364707793733825133608023813585668606497775192454} a^{9} - \frac{518430878525324730928386415273143047833438695082523571800437655677297}{1927457101698331414252182353896866912566804011906792834303248887596227} a^{8} + \frac{154780945934552233143709896631750002977029641327857262623713000683575}{1927457101698331414252182353896866912566804011906792834303248887596227} a^{7} + \frac{635305474656076250479275173617930865487075318191774552540367388733645}{7709828406793325657008729415587467650267216047627171337212995550384908} a^{6} + \frac{2095694657433227269233244125585826737788173099507481095233150450580871}{7709828406793325657008729415587467650267216047627171337212995550384908} a^{5} - \frac{254730650337442414401825081739550051058108280299877966138154245242346}{1927457101698331414252182353896866912566804011906792834303248887596227} a^{4} + \frac{67268475366757230575095695710156776045398342380081365401236122154439}{428323800377406980944929411977081536125956447090398407622944197243606} a^{3} + \frac{140478629714384016481699071436426015574273114317774151483475413185565}{3854914203396662828504364707793733825133608023813585668606497775192454} a^{2} - \frac{462890029012448023884403268702477602567686086198545206358366610912227}{2569942802264441885669576471862489216755738682542390445737665183461636} a - \frac{287893315718236284846851456256720447226864497289315576751504236137899}{856647600754813961889858823954163072251912894180796815245888394487212}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 159717488455000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3456 |
| The 24 conjugacy class representatives for t18n437 |
| Character table for t18n437 is not computed |
Intermediate fields
| 3.3.32009.4, 9.9.32795655776729.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ |
| 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 32009 | Data not computed | ||||||