Normalized defining polynomial
\( x^{18} - 6 x^{17} - 58 x^{16} + 378 x^{15} + 1130 x^{14} - 8762 x^{13} - 7180 x^{12} + 92108 x^{11} - 23052 x^{10} - 422000 x^{9} + 370866 x^{8} + 616044 x^{7} - 740360 x^{6} - 178552 x^{5} + 285632 x^{4} + 40440 x^{3} - 25872 x^{2} - 1600 x + 650 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45029569514238051491896936200404992=2^{30}\cdot 19^{9}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{37} a^{16} + \frac{11}{37} a^{15} - \frac{8}{37} a^{14} - \frac{7}{37} a^{13} - \frac{2}{37} a^{12} + \frac{7}{37} a^{11} - \frac{16}{37} a^{10} + \frac{5}{37} a^{9} - \frac{18}{37} a^{8} - \frac{7}{37} a^{7} - \frac{6}{37} a^{6} + \frac{18}{37} a^{4} - \frac{17}{37} a^{3} + \frac{12}{37} a^{2} + \frac{16}{37} a - \frac{12}{37}$, $\frac{1}{364240339608462556033711109244402852815} a^{17} + \frac{3191190011860906610663401912676682759}{364240339608462556033711109244402852815} a^{16} - \frac{4402874279999286844694142651367879418}{364240339608462556033711109244402852815} a^{15} + \frac{3931371279454062385474482241435777363}{364240339608462556033711109244402852815} a^{14} - \frac{4216541234320153558619043137401648992}{72848067921692511206742221848880570563} a^{13} + \frac{4442623034438361583696296713335617843}{364240339608462556033711109244402852815} a^{12} - \frac{7129240222169230697202025926198190642}{72848067921692511206742221848880570563} a^{11} + \frac{134392961634041101341794076925220366738}{364240339608462556033711109244402852815} a^{10} + \frac{95479885840624459022716821518139027983}{364240339608462556033711109244402852815} a^{9} + \frac{22024280640965676645157266065167498952}{72848067921692511206742221848880570563} a^{8} - \frac{52144876929943551076080736046747002319}{364240339608462556033711109244402852815} a^{7} - \frac{167225593048886715707119892137114056976}{364240339608462556033711109244402852815} a^{6} - \frac{31249844672938991089062962049392685907}{72848067921692511206742221848880570563} a^{5} - \frac{44748723101874840843471947668346293782}{364240339608462556033711109244402852815} a^{4} + \frac{138345821702208688317330814802093022812}{364240339608462556033711109244402852815} a^{3} - \frac{35497871850658259378242846712614888868}{72848067921692511206742221848880570563} a^{2} - \frac{145929934852523860479100515893385293672}{364240339608462556033711109244402852815} a - \frac{29265013255575156726760117549836036231}{72848067921692511206742221848880570563}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 835946905244 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 88 conjugacy class representatives for t18n656 are not computed |
| Character table for t18n656 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.62526089134336.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 19.12.8.1 | $x^{12} - 114 x^{9} + 4332 x^{6} - 54872 x^{3} + 130321000$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 37 | Data not computed | ||||||