Normalized defining polynomial
\( x^{18} - 8 x^{17} - 472 x^{16} + 2798 x^{15} + 87217 x^{14} - 340431 x^{13} - 8340534 x^{12} + 16873546 x^{11} + 450460997 x^{10} - 190123749 x^{9} - 13812947083 x^{8} - 11756752362 x^{7} + 226979222586 x^{6} + 423304812725 x^{5} - 1686494584819 x^{4} - 4843115828322 x^{3} + 2679030356148 x^{2} + 17857643306944 x + 13817270461397 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44959308451480273281658553284949058058768=2^{4}\cdot 193^{9}\cdot 229^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $181.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 193, 229$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} + \frac{3}{8} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a + \frac{1}{8}$, $\frac{1}{6164348822589821232716573882127205701413353632682524468056853096655533453955422146753294173027894216} a^{17} + \frac{301825224956178964372900482894157290859605363202558956202620102349567430516353245927732001353471097}{6164348822589821232716573882127205701413353632682524468056853096655533453955422146753294173027894216} a^{16} - \frac{125203987978028504174807689274850942998201876914269420540281514241561115571537220687274290483632325}{3082174411294910616358286941063602850706676816341262234028426548327766726977711073376647086513947108} a^{15} - \frac{440476882863295637370332658393045493320271281930307489786749957155684065847565784756460542044228513}{6164348822589821232716573882127205701413353632682524468056853096655533453955422146753294173027894216} a^{14} - \frac{118669101708847805137656378971496742704515387731375774657760774659363814852639118966067171997321422}{770543602823727654089571735265900712676669204085315558507106637081941681744427768344161771628486777} a^{13} + \frac{173095734505857275835183461462430926342463119338373158575224240589326767025005428735818211965029055}{1541087205647455308179143470531801425353338408170631117014213274163883363488855536688323543256973554} a^{12} + \frac{61943396461983284068488731981932159037003527749187780142506423008626113750020539183439637316855302}{770543602823727654089571735265900712676669204085315558507106637081941681744427768344161771628486777} a^{11} - \frac{903905804546864736120787881012309617731212581480945115850018728378987411304284396668230985701402795}{3082174411294910616358286941063602850706676816341262234028426548327766726977711073376647086513947108} a^{10} - \frac{623787061042272362863829649920220762280459705490325646968664844840086110771683024143019152181085713}{6164348822589821232716573882127205701413353632682524468056853096655533453955422146753294173027894216} a^{9} + \frac{597167326787748238490265152329296499211067762361112477325493867115495918625177831130203911153356363}{1541087205647455308179143470531801425353338408170631117014213274163883363488855536688323543256973554} a^{8} - \frac{182815694030371590515202019395606526448209471928673399289851134006405220920037782332686372467152879}{770543602823727654089571735265900712676669204085315558507106637081941681744427768344161771628486777} a^{7} + \frac{643373842389716541964776475716128677604617905094828619783246694109070980979582255092208192533930185}{1541087205647455308179143470531801425353338408170631117014213274163883363488855536688323543256973554} a^{6} - \frac{1334473737535260270245665768591606837257597531881404088065680708659330677178331818502266442038053231}{3082174411294910616358286941063602850706676816341262234028426548327766726977711073376647086513947108} a^{5} + \frac{24610744405835525924469913755180037794449432101912464297796406896570515209018671969374760473671587}{6164348822589821232716573882127205701413353632682524468056853096655533453955422146753294173027894216} a^{4} - \frac{1340960088597213108748116169263004668582062265218322526955454869831175840400090961729109837288844631}{3082174411294910616358286941063602850706676816341262234028426548327766726977711073376647086513947108} a^{3} - \frac{2534798004794715972634261186301686428634323790413042085644490628166277859484487857363925170496529997}{6164348822589821232716573882127205701413353632682524468056853096655533453955422146753294173027894216} a^{2} + \frac{2095237727602760568579644954473528477401869104934947609993107432024445931048292464981346227733655435}{6164348822589821232716573882127205701413353632682524468056853096655533453955422146753294173027894216} a + \frac{49633236055929616973163816417797897359146684629509041726678220233835423545269885986467096565134785}{237090339330377739719868226235661757746667447410866325694494349871366671305977774875126698962611316}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 286039246883000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 80 conjugacy class representatives for t18n769 are not computed |
| Character table for t18n769 is not computed |
Intermediate fields
| 3.3.229.1, 9.9.1789291325044.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.