Normalized defining polynomial
\( x^{18} - 6 x^{17} - 53 x^{16} + 387 x^{15} + 821 x^{14} - 9422 x^{13} + 930 x^{12} + 106986 x^{11} - 135808 x^{10} - 547108 x^{9} + 1226686 x^{8} + 785608 x^{7} - 3884238 x^{6} + 1863610 x^{5} + 3012697 x^{4} - 3172986 x^{3} + 685681 x^{2} + 79619 x - 22133 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4469642099029414895974730306243001=3^{3}\cdot 7^{13}\cdot 181^{3}\cdot 257^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 181, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{14} a^{11} + \frac{1}{7} a^{10} - \frac{1}{7} a^{9} + \frac{1}{7} a^{8} + \frac{1}{7} a^{7} - \frac{1}{7} a^{6} - \frac{5}{14} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{2}{7}$, $\frac{1}{14} a^{12} + \frac{1}{14} a^{10} - \frac{1}{14} a^{9} - \frac{1}{7} a^{8} + \frac{1}{14} a^{7} + \frac{2}{7} a^{6} - \frac{5}{14} a^{5} - \frac{1}{7} a^{4} - \frac{3}{14} a^{3} + \frac{5}{14} a^{2} + \frac{2}{7} a - \frac{1}{14}$, $\frac{1}{14} a^{13} - \frac{3}{14} a^{10} - \frac{1}{14} a^{8} + \frac{1}{7} a^{7} - \frac{3}{14} a^{6} - \frac{1}{7} a^{5} + \frac{1}{7} a^{4} + \frac{3}{14} a^{3} - \frac{2}{7} a^{2} - \frac{1}{14} a - \frac{2}{7}$, $\frac{1}{84} a^{14} + \frac{1}{42} a^{13} + \frac{1}{42} a^{12} + \frac{1}{42} a^{10} - \frac{1}{42} a^{9} - \frac{1}{7} a^{8} + \frac{4}{21} a^{7} + \frac{11}{42} a^{6} + \frac{5}{14} a^{5} - \frac{1}{7} a^{4} + \frac{1}{42} a^{3} + \frac{3}{14} a^{2} + \frac{4}{21} a - \frac{5}{84}$, $\frac{1}{168} a^{15} - \frac{1}{168} a^{14} - \frac{1}{42} a^{13} - \frac{1}{42} a^{11} - \frac{1}{12} a^{10} - \frac{1}{12} a^{8} - \frac{4}{21} a^{7} - \frac{1}{2} a^{6} - \frac{2}{7} a^{5} - \frac{1}{6} a^{4} + \frac{11}{28} a^{3} - \frac{1}{3} a^{2} - \frac{71}{168} a - \frac{5}{56}$, $\frac{1}{3528} a^{16} + \frac{1}{882} a^{15} - \frac{17}{3528} a^{14} + \frac{1}{294} a^{13} + \frac{8}{441} a^{12} - \frac{5}{1764} a^{11} - \frac{31}{252} a^{10} + \frac{439}{1764} a^{9} + \frac{13}{588} a^{8} + \frac{23}{294} a^{7} - \frac{251}{882} a^{6} - \frac{149}{441} a^{5} - \frac{1}{1764} a^{4} - \frac{79}{588} a^{3} + \frac{535}{1176} a^{2} + \frac{3}{28} a - \frac{635}{3528}$, $\frac{1}{948299504366598520461461510472} a^{17} + \frac{12453925456323707793758215}{948299504366598520461461510472} a^{16} + \frac{1074328757754450632468193661}{948299504366598520461461510472} a^{15} - \frac{870287073866605800048924901}{316099834788866173487153836824} a^{14} - \frac{371620017497026589552565065}{237074876091649630115365377618} a^{13} + \frac{12219895702842661289060510251}{474149752183299260230730755236} a^{12} - \frac{4065826403288441755065915713}{237074876091649630115365377618} a^{11} - \frac{10728070659841803807017314322}{118537438045824815057682688809} a^{10} + \frac{2563362512747068297256920529}{11289279813888077624541208458} a^{9} + \frac{7528562108128841192832105739}{52683305798144362247858972804} a^{8} - \frac{33189710322726597299013667055}{237074876091649630115365377618} a^{7} - \frac{95441620042066433996230582711}{237074876091649630115365377618} a^{6} + \frac{173333379396328771024812230219}{474149752183299260230730755236} a^{5} + \frac{37601040449257043632627408831}{79024958697216543371788459206} a^{4} - \frac{40591318130211402158634673529}{105366611596288724495717945608} a^{3} + \frac{109773932098907917329950279167}{316099834788866173487153836824} a^{2} + \frac{268131174695159055381302889025}{948299504366598520461461510472} a - \frac{5733439420619754865326546991}{316099834788866173487153836824}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 116066378910 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 40 conjugacy class representatives for t18n176 |
| Character table for t18n176 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.257.1, 9.9.1997043891857.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.12.0.1 | $x^{12} - x^{4} - x^{3} - x^{2} + x - 1$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $181$ | $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{181}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.1.2 | $x^{2} + 362$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.2.0.1 | $x^{2} - x + 18$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 181.4.2.1 | $x^{4} + 6335 x^{2} + 10614564$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 257 | Data not computed | ||||||