Normalized defining polynomial
\( x^{18} - 2 x^{17} - 43 x^{16} + 72 x^{15} + 632 x^{14} - 992 x^{13} - 3992 x^{12} + 6348 x^{11} + 10757 x^{10} - 19102 x^{9} - 10133 x^{8} + 24924 x^{7} - 423 x^{6} - 11930 x^{5} + 2619 x^{4} + 1700 x^{3} - 427 x^{2} - 18 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4380468175801074602525851648=2^{27}\cdot 7^{12}\cdot 11^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{11} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} + \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{11} + \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{6}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{11} + \frac{1}{6} a^{9} + \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{8916} a^{16} + \frac{4}{2229} a^{15} + \frac{49}{743} a^{14} - \frac{101}{4458} a^{13} - \frac{37}{743} a^{12} + \frac{329}{1486} a^{11} + \frac{275}{2229} a^{10} - \frac{189}{1486} a^{9} - \frac{883}{8916} a^{8} + \frac{631}{2229} a^{7} - \frac{15}{1486} a^{6} + \frac{845}{2229} a^{5} + \frac{933}{2972} a^{4} + \frac{781}{4458} a^{3} + \frac{1022}{2229} a^{2} - \frac{667}{2229} a + \frac{4445}{8916}$, $\frac{1}{23166039509494141668} a^{17} - \frac{217343734760233}{11583019754747070834} a^{16} - \frac{89922324609976163}{11583019754747070834} a^{15} + \frac{150009120514023827}{11583019754747070834} a^{14} + \frac{289239149694241435}{5791509877373535417} a^{13} + \frac{747720436271985869}{11583019754747070834} a^{12} - \frac{1958701998124930169}{11583019754747070834} a^{11} - \frac{2704038325849825991}{11583019754747070834} a^{10} + \frac{438261274095673723}{7722013169831380556} a^{9} - \frac{205370855351850185}{11583019754747070834} a^{8} + \frac{1135584883059831890}{5791509877373535417} a^{7} - \frac{163628028803595587}{1930503292457845139} a^{6} - \frac{3257620441035070013}{7722013169831380556} a^{5} + \frac{802653512947512571}{1930503292457845139} a^{4} - \frac{3290046270656853623}{11583019754747070834} a^{3} - \frac{1051161141256063577}{5791509877373535417} a^{2} + \frac{2089020871230126533}{7722013169831380556} a - \frac{1291526443201051621}{3861006584915690278}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 108234901.786 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{22}) \), 3.3.4312.1 x3, \(\Q(\zeta_{7})^+\), 6.6.1636214272.1, 6.6.1636214272.2, 6.6.33392128.1 x2, 9.9.80174499328.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.6.33392128.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | R | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.7 | $x^{6} + 4 x^{4} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |