Normalized defining polynomial
\( x^{18} - 6 x^{17} - 39 x^{16} + 254 x^{15} + 537 x^{14} - 4062 x^{13} - 2802 x^{12} + 31254 x^{11} - 740 x^{10} - 121028 x^{9} + 55551 x^{8} + 220500 x^{7} - 168253 x^{6} - 144998 x^{5} + 152385 x^{4} + 11322 x^{3} - 40450 x^{2} + 10964 x - 727 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(43281927256346630219321487392768=2^{27}\cdot 7^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(728=2^{3}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{728}(1,·)$, $\chi_{728}(261,·)$, $\chi_{728}(417,·)$, $\chi_{728}(393,·)$, $\chi_{728}(653,·)$, $\chi_{728}(81,·)$, $\chi_{728}(625,·)$, $\chi_{728}(477,·)$, $\chi_{728}(289,·)$, $\chi_{728}(165,·)$, $\chi_{728}(529,·)$, $\chi_{728}(365,·)$, $\chi_{728}(29,·)$, $\chi_{728}(113,·)$, $\chi_{728}(373,·)$, $\chi_{728}(9,·)$, $\chi_{728}(445,·)$, $\chi_{728}(53,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{1559401678852} a^{16} - \frac{71926507223}{1559401678852} a^{15} - \frac{91440749995}{779700839426} a^{14} + \frac{138056269617}{1559401678852} a^{13} + \frac{109839630371}{1559401678852} a^{12} + \frac{40617447573}{1559401678852} a^{11} + \frac{112549909615}{779700839426} a^{10} + \frac{370224281395}{1559401678852} a^{9} + \frac{17376958906}{389850419713} a^{8} + \frac{45020033200}{389850419713} a^{7} - \frac{136481985449}{779700839426} a^{6} - \frac{96270729122}{389850419713} a^{5} + \frac{370895820707}{1559401678852} a^{4} + \frac{418500007433}{1559401678852} a^{3} + \frac{34748157499}{389850419713} a^{2} + \frac{770775462647}{1559401678852} a - \frac{104106022122}{389850419713}$, $\frac{1}{40572913646602800964} a^{17} + \frac{4408905}{40572913646602800964} a^{16} - \frac{3135388383875203217}{40572913646602800964} a^{15} + \frac{1021518958757019983}{20286456823301400482} a^{14} - \frac{1808810496335204923}{40572913646602800964} a^{13} - \frac{1330370708827277091}{20286456823301400482} a^{12} - \frac{4042227765320036225}{40572913646602800964} a^{11} + \frac{2220769412345448755}{20286456823301400482} a^{10} + \frac{3956226556918952331}{20286456823301400482} a^{9} - \frac{6045868647173662349}{40572913646602800964} a^{8} + \frac{1146954139384072557}{20286456823301400482} a^{7} - \frac{226796097248983017}{10143228411650700241} a^{6} + \frac{1362379499764676685}{40572913646602800964} a^{5} + \frac{4312676669974254285}{40572913646602800964} a^{4} + \frac{9133593467678263621}{40572913646602800964} a^{3} - \frac{5611531735215324087}{20286456823301400482} a^{2} + \frac{3571391916674065267}{20286456823301400482} a + \frac{7562116359049399101}{40572913646602800964}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8169166181.92 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.3.8281.1, 3.3.169.1, \(\Q(\zeta_{7})^+\), 3.3.8281.2, 6.6.35110380032.2, 6.6.14623232.1, 6.6.1229312.1, 6.6.35110380032.1, 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |