Normalized defining polynomial
\( x^{18} - 9 x^{17} - 21 x^{16} + 364 x^{15} - 228 x^{14} - 5196 x^{13} + 8330 x^{12} + 32592 x^{11} - 68550 x^{10} - 100088 x^{9} + 245598 x^{8} + 159384 x^{7} - 413984 x^{6} - 153138 x^{5} + 299925 x^{4} + 107821 x^{3} - 61668 x^{2} - 26043 x - 953 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41454985178292648293852083940013=3^{24}\cdot 7^{12}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(819=3^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{819}(64,·)$, $\chi_{819}(1,·)$, $\chi_{819}(781,·)$, $\chi_{819}(142,·)$, $\chi_{819}(79,·)$, $\chi_{819}(337,·)$, $\chi_{819}(274,·)$, $\chi_{819}(25,·)$, $\chi_{819}(415,·)$, $\chi_{819}(352,·)$, $\chi_{819}(610,·)$, $\chi_{819}(547,·)$, $\chi_{819}(298,·)$, $\chi_{819}(235,·)$, $\chi_{819}(688,·)$, $\chi_{819}(625,·)$, $\chi_{819}(571,·)$, $\chi_{819}(508,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{508} a^{16} + \frac{27}{127} a^{15} + \frac{13}{127} a^{14} - \frac{23}{127} a^{13} - \frac{29}{254} a^{12} + \frac{13}{127} a^{11} + \frac{59}{254} a^{10} - \frac{18}{127} a^{9} - \frac{51}{254} a^{8} - \frac{55}{127} a^{7} + \frac{36}{127} a^{6} + \frac{21}{254} a^{5} - \frac{107}{254} a^{4} - \frac{105}{254} a^{3} + \frac{165}{508} a^{2} - \frac{49}{127} a - \frac{19}{508}$, $\frac{1}{10556685455623739727340116202772} a^{17} - \frac{7905849164269073548381371983}{10556685455623739727340116202772} a^{16} + \frac{184918018828532758225175882750}{2639171363905934931835029050693} a^{15} - \frac{2564519194214487661249617786}{20780876881149093951456921659} a^{14} + \frac{154603046545358581790340556637}{5278342727811869863670058101386} a^{13} + \frac{575988992917059733781909076553}{5278342727811869863670058101386} a^{12} + \frac{1146548085682980485282648891791}{5278342727811869863670058101386} a^{11} - \frac{10343609772102234220996513771}{41561753762298187902913843318} a^{10} + \frac{739776112483777617573319084795}{5278342727811869863670058101386} a^{9} + \frac{526732492083434000339768071639}{5278342727811869863670058101386} a^{8} + \frac{93275959277827962336938592838}{2639171363905934931835029050693} a^{7} + \frac{972327273535368198802797588763}{5278342727811869863670058101386} a^{6} + \frac{985945354912656922940869996559}{2639171363905934931835029050693} a^{5} - \frac{1029424784175405787807406157573}{2639171363905934931835029050693} a^{4} - \frac{610526930109915911610399751217}{10556685455623739727340116202772} a^{3} + \frac{1024972483284113358567263536453}{10556685455623739727340116202772} a^{2} + \frac{939436731316089436558241492357}{10556685455623739727340116202772} a - \frac{1174531929808668257980712360307}{10556685455623739727340116202772}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7477366325.71 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 3.3.3969.1, 3.3.3969.2, 6.6.14414517.1, 6.6.5274997.1, 6.6.34609255317.1, 6.6.34609255317.2, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |