Normalized defining polynomial
\( x^{18} - 43 x^{16} - 11 x^{15} + 708 x^{14} + 300 x^{13} - 5681 x^{12} - 2834 x^{11} + 23869 x^{10} + 11970 x^{9} - 52189 x^{8} - 22763 x^{7} + 55351 x^{6} + 15806 x^{5} - 25783 x^{4} - 1988 x^{3} + 3859 x^{2} - 66 x - 127 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(412006253628151171906676331799969=7^{12}\cdot 19^{6}\cdot 293^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19, 293$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{293} a^{16} + \frac{3}{293} a^{15} + \frac{37}{293} a^{14} + \frac{20}{293} a^{13} - \frac{121}{293} a^{12} - \frac{108}{293} a^{11} + \frac{54}{293} a^{10} - \frac{85}{293} a^{9} - \frac{94}{293} a^{8} + \frac{86}{293} a^{7} - \frac{5}{293} a^{6} + \frac{29}{293} a^{5} - \frac{1}{293} a^{4} - \frac{11}{293} a^{3} - \frac{103}{293} a^{2} + \frac{145}{293} a - \frac{89}{293}$, $\frac{1}{8792960650605717334709267} a^{17} + \frac{2119371120062038133574}{8792960650605717334709267} a^{16} + \frac{4021595456866379396320028}{8792960650605717334709267} a^{15} + \frac{2283122048923623961821917}{8792960650605717334709267} a^{14} - \frac{48710276998951547105766}{123844516205714328657877} a^{13} + \frac{500343733723836539897480}{8792960650605717334709267} a^{12} + \frac{55918657985075040138342}{8792960650605717334709267} a^{11} + \frac{2049461435132157289442697}{8792960650605717334709267} a^{10} + \frac{3258648147892775317799473}{8792960650605717334709267} a^{9} + \frac{1159723576896911363957267}{8792960650605717334709267} a^{8} - \frac{922554433064624050253359}{8792960650605717334709267} a^{7} + \frac{974656792184836504867122}{8792960650605717334709267} a^{6} - \frac{1173058658021194126945088}{8792960650605717334709267} a^{5} - \frac{269971881700531055190121}{8792960650605717334709267} a^{4} + \frac{57494290201610365246332}{123844516205714328657877} a^{3} + \frac{54881093938959152980985}{123844516205714328657877} a^{2} + \frac{2243198697620631813223864}{8792960650605717334709267} a + \frac{501011691090339444238184}{8792960650605717334709267}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37446504667.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times A_5$ (as 18T90):
| A non-solvable group of order 180 |
| The 15 conjugacy class representatives for $C_3\times A_5$ |
| Character table for $C_3\times A_5$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.6.30991489.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | $15{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $19$ | 19.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 19.6.3.1 | $x^{6} - 38 x^{4} + 361 x^{2} - 109744$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 293 | Data not computed | ||||||