Normalized defining polynomial
\( x^{18} - 36 x^{16} + 540 x^{14} - 4368 x^{12} + 20592 x^{10} - 62 x^{9} - 57024 x^{8} + 1116 x^{7} + 88704 x^{6} - 6696 x^{5} - 69120 x^{4} + 14880 x^{3} + 20736 x^{2} - 8928 x + 898 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(406468989013028578759524596318208=2^{26}\cdot 3^{36}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{4}$, $\frac{1}{1347} a^{14} - \frac{10}{449} a^{13} - \frac{28}{1347} a^{12} - \frac{118}{1347} a^{11} - \frac{47}{449} a^{10} - \frac{167}{1347} a^{9} - \frac{111}{449} a^{8} - \frac{92}{449} a^{7} + \frac{221}{449} a^{6} + \frac{164}{1347} a^{5} + \frac{165}{449} a^{4} + \frac{115}{1347} a^{3} - \frac{263}{1347} a^{2} + \frac{154}{449} a + \frac{1}{3}$, $\frac{1}{1347} a^{15} - \frac{10}{449} a^{13} - \frac{20}{449} a^{12} - \frac{89}{1347} a^{11} + \frac{31}{449} a^{10} + \frac{15}{449} a^{9} + \frac{170}{449} a^{8} + \frac{155}{449} a^{7} - \frac{151}{1347} a^{6} + \frac{9}{449} a^{5} + \frac{199}{449} a^{4} - \frac{135}{449} a^{3} - \frac{244}{1347} a^{2} + \frac{130}{449} a$, $\frac{1}{1347} a^{16} - \frac{62}{1347} a^{13} - \frac{31}{1347} a^{12} + \frac{145}{1347} a^{11} - \frac{48}{449} a^{10} - \frac{10}{1347} a^{9} - \frac{32}{449} a^{8} - \frac{349}{1347} a^{7} - \frac{96}{449} a^{6} + \frac{43}{449} a^{5} + \frac{77}{1347} a^{4} - \frac{386}{1347} a^{3} - \frac{316}{1347} a^{2} + \frac{130}{449} a - \frac{1}{3}$, $\frac{1}{1347} a^{17} - \frac{95}{1347} a^{13} + \frac{205}{1347} a^{12} + \frac{173}{1347} a^{11} - \frac{221}{1347} a^{10} - \frac{41}{449} a^{9} + \frac{557}{1347} a^{8} + \frac{37}{449} a^{7} - \frac{174}{449} a^{6} - \frac{177}{449} a^{5} + \frac{221}{1347} a^{4} - \frac{370}{1347} a^{3} - \frac{650}{1347} a^{2} - \frac{541}{1347} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 138328022131 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_9:C_3$ (as 18T45):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times D_9:C_3$ |
| Character table for $C_2\times D_9:C_3$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), 3.3.756.1, 6.6.64012032.1, 9.9.238130328086784.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.18.28 | $x^{9} + 24 x^{3} + 9 x + 6$ | $9$ | $1$ | $18$ | $(C_9:C_3):C_2$ | $[3/2, 2, 5/2]_{2}$ |
| 3.9.18.28 | $x^{9} + 24 x^{3} + 9 x + 6$ | $9$ | $1$ | $18$ | $(C_9:C_3):C_2$ | $[3/2, 2, 5/2]_{2}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |