Normalized defining polynomial
\( x^{18} - 8 x^{17} - 15 x^{16} + 244 x^{15} - 160 x^{14} - 2693 x^{13} + 4444 x^{12} + 12350 x^{11} - 31392 x^{10} - 15335 x^{9} + 87225 x^{8} - 34860 x^{7} - 78445 x^{6} + 64265 x^{5} + 16235 x^{4} - 27711 x^{3} + 4358 x^{2} + 1785 x - 289 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39246162302049939925000000000000=2^{12}\cdot 5^{14}\cdot 13^{9}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{5} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{8} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{85} a^{15} + \frac{8}{85} a^{14} - \frac{2}{85} a^{13} + \frac{6}{85} a^{12} - \frac{4}{85} a^{11} + \frac{4}{85} a^{10} + \frac{4}{85} a^{9} - \frac{31}{85} a^{8} + \frac{3}{85} a^{7} - \frac{26}{85} a^{6} + \frac{19}{85} a^{5} + \frac{4}{17} a^{4} + \frac{3}{17} a^{3} - \frac{3}{17} a^{2} - \frac{27}{85} a - \frac{1}{5}$, $\frac{1}{5525} a^{16} - \frac{4}{5525} a^{15} + \frac{9}{221} a^{14} - \frac{28}{1105} a^{13} - \frac{18}{221} a^{12} - \frac{33}{5525} a^{11} + \frac{262}{5525} a^{10} + \frac{93}{1105} a^{9} + \frac{7}{1105} a^{8} + \frac{90}{221} a^{7} - \frac{67}{221} a^{6} - \frac{453}{1105} a^{5} - \frac{94}{221} a^{4} - \frac{69}{221} a^{3} + \frac{17}{65} a^{2} + \frac{1089}{5525} a - \frac{118}{325}$, $\frac{1}{65882846482069175} a^{17} + \frac{160354260069}{3875461557768775} a^{16} + \frac{97362189965682}{65882846482069175} a^{15} - \frac{404438381412062}{13176569296413835} a^{14} + \frac{387359802764579}{13176569296413835} a^{13} - \frac{721612471307278}{65882846482069175} a^{12} - \frac{2573963073082329}{65882846482069175} a^{11} + \frac{4195554288023439}{65882846482069175} a^{10} + \frac{5950905838088}{1013582253570295} a^{9} - \frac{922734331298275}{2635313859282767} a^{8} + \frac{113387962878}{2635313859282767} a^{7} + \frac{4110912067741399}{13176569296413835} a^{6} - \frac{843616680943290}{2635313859282767} a^{5} + \frac{416772002785903}{1013582253570295} a^{4} + \frac{6556304870353857}{13176569296413835} a^{3} + \frac{24433823766545534}{65882846482069175} a^{2} + \frac{60626387292262}{298112427520675} a - \frac{26973948258378}{227968326927575}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12399191314.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^3:C_2^2$ (as 18T53):
| A solvable group of order 108 |
| The 15 conjugacy class representatives for $C_3^3:C_2^2$ |
| Character table for $C_3^3:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.1300.1 x3, 6.6.464885200.2, 6.6.21970000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $23$ | 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 23.9.6.1 | $x^{9} - 529 x^{3} + 48668$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |