Normalized defining polynomial
\( x^{18} - 45 x^{16} - 6 x^{15} + 774 x^{14} + 234 x^{13} - 6555 x^{12} - 3420 x^{11} + 29034 x^{10} + 23344 x^{9} - 64449 x^{8} - 76284 x^{7} + 53727 x^{6} + 111114 x^{5} + 21204 x^{4} - 49452 x^{3} - 37620 x^{2} - 10512 x - 1052 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3883935753586811556108815486976=2^{12}\cdot 3^{25}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{6} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{7} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{18} a^{12} - \frac{1}{18} a^{9} - \frac{1}{6} a^{6} + \frac{5}{18} a^{3} - \frac{1}{9}$, $\frac{1}{18} a^{13} - \frac{1}{18} a^{10} - \frac{1}{6} a^{7} + \frac{5}{18} a^{4} - \frac{1}{9} a$, $\frac{1}{108} a^{14} + \frac{1}{108} a^{13} + \frac{1}{108} a^{12} - \frac{1}{27} a^{11} + \frac{5}{108} a^{10} + \frac{5}{108} a^{9} - \frac{1}{36} a^{8} - \frac{1}{9} a^{7} - \frac{1}{36} a^{6} + \frac{23}{108} a^{5} + \frac{41}{108} a^{4} + \frac{25}{54} a^{3} - \frac{2}{27} a^{2} - \frac{13}{54} a - \frac{11}{27}$, $\frac{1}{1188} a^{15} - \frac{5}{1188} a^{14} + \frac{13}{1188} a^{13} - \frac{7}{297} a^{12} + \frac{83}{1188} a^{11} - \frac{7}{1188} a^{10} + \frac{25}{396} a^{9} + \frac{5}{99} a^{8} + \frac{47}{396} a^{7} + \frac{113}{1188} a^{6} - \frac{97}{1188} a^{5} - \frac{76}{297} a^{4} - \frac{109}{594} a^{3} - \frac{43}{594} a^{2} + \frac{1}{297} a + \frac{37}{99}$, $\frac{1}{3564} a^{16} - \frac{1}{3564} a^{15} + \frac{5}{1188} a^{14} + \frac{23}{1782} a^{13} - \frac{7}{3564} a^{12} + \frac{13}{1188} a^{11} - \frac{239}{3564} a^{10} - \frac{31}{891} a^{9} - \frac{31}{396} a^{8} - \frac{577}{3564} a^{7} - \frac{305}{3564} a^{6} - \frac{31}{594} a^{5} - \frac{167}{1782} a^{4} + \frac{665}{1782} a^{3} + \frac{122}{297} a^{2} - \frac{28}{891} a + \frac{202}{891}$, $\frac{1}{121052945772} a^{17} + \frac{5762467}{60526472886} a^{16} + \frac{8273993}{20175490962} a^{15} - \frac{13173115}{60526472886} a^{14} + \frac{593321804}{30263236443} a^{13} + \frac{104884957}{4483442436} a^{12} - \frac{91729336}{2751203313} a^{11} + \frac{3928927597}{60526472886} a^{10} - \frac{1238099657}{20175490962} a^{9} - \frac{8085857653}{121052945772} a^{8} - \frac{5718739195}{60526472886} a^{7} + \frac{2677610671}{20175490962} a^{6} - \frac{15277278817}{121052945772} a^{5} + \frac{652078049}{7120761516} a^{4} - \frac{950661562}{3362581827} a^{3} + \frac{11159170496}{30263236443} a^{2} + \frac{19967289095}{60526472886} a - \frac{4006938560}{10087745481}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10900954227.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 648 |
| The 14 conjugacy class representatives for t18n221 |
| Character table for t18n221 |
Intermediate fields
| 3.3.564.1, 6.6.44851536.1, 9.9.165968803220544.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.12.18.78 | $x^{12} - 15 x^{11} - 24 x^{10} - 15 x^{9} - 9 x^{7} + 21 x^{6} + 18 x^{5} - 9 x^{4} - 36 x^{3} + 36$ | $6$ | $2$ | $18$ | $S_3^2$ | $[3/2, 2]_{2}^{2}$ | |
| $47$ | 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.4.3.2 | $x^{4} - 47$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 47.4.3.2 | $x^{4} - 47$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 47.4.3.2 | $x^{4} - 47$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |