Normalized defining polynomial
\( x^{18} - 2 x^{17} - 66 x^{16} + 108 x^{15} + 1544 x^{14} - 1850 x^{13} - 16889 x^{12} + 15264 x^{11} + 95078 x^{10} - 72124 x^{9} - 281919 x^{8} + 202114 x^{7} + 412283 x^{6} - 313520 x^{5} - 223063 x^{4} + 212908 x^{3} - 16553 x^{2} - 12592 x + 647 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3830034706318154794675914145792=2^{18}\cdot 19^{16}\cdot 37^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{113} a^{16} + \frac{9}{113} a^{15} + \frac{3}{113} a^{14} - \frac{16}{113} a^{13} + \frac{35}{113} a^{12} + \frac{32}{113} a^{11} + \frac{41}{113} a^{10} - \frac{48}{113} a^{9} - \frac{18}{113} a^{8} - \frac{31}{113} a^{7} - \frac{11}{113} a^{6} - \frac{25}{113} a^{5} + \frac{1}{113} a^{4} + \frac{25}{113} a^{3} + \frac{18}{113} a^{2} + \frac{29}{113} a - \frac{50}{113}$, $\frac{1}{84278131884111759842344849397472623} a^{17} - \frac{45432673966796734633667223797118}{84278131884111759842344849397472623} a^{16} + \frac{40125117206342112770728760451310166}{84278131884111759842344849397472623} a^{15} - \frac{31129519030202013051370287710566188}{84278131884111759842344849397472623} a^{14} + \frac{16216027771631122308936313850201701}{84278131884111759842344849397472623} a^{13} - \frac{33418341946964599794051543774970024}{84278131884111759842344849397472623} a^{12} + \frac{36729398170315193629989502975122520}{84278131884111759842344849397472623} a^{11} + \frac{28593058978085596824089003368612016}{84278131884111759842344849397472623} a^{10} + \frac{3880754659711246131619233062803454}{84278131884111759842344849397472623} a^{9} - \frac{2032496288778112420718130610791073}{84278131884111759842344849397472623} a^{8} + \frac{9781820093998736252266621561751894}{84278131884111759842344849397472623} a^{7} + \frac{31679275574951597366039533206801623}{84278131884111759842344849397472623} a^{6} + \frac{37249015883645039568733011777273502}{84278131884111759842344849397472623} a^{5} + \frac{24840418087377783499947945197237349}{84278131884111759842344849397472623} a^{4} + \frac{40390017586134492851932860644978995}{84278131884111759842344849397472623} a^{3} - \frac{35952663429739539019151499073816208}{84278131884111759842344849397472623} a^{2} - \frac{16243270373569445314143840271309042}{84278131884111759842344849397472623} a + \frac{29969122906989144954974027017339013}{84278131884111759842344849397472623}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2587028370.07 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:C_9$ (as 18T26):
| A solvable group of order 72 |
| The 24 conjugacy class representatives for $C_2\times C_2^2:C_9$ |
| Character table for $C_2\times C_2^2:C_9$ is not computed |
Intermediate fields
| 3.3.361.1, 6.6.308600128.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | $18$ | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 19 | Data not computed | ||||||
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |