Normalized defining polynomial
\( x^{18} - 99 x^{16} + 3771 x^{14} - 72752 x^{12} + 790428 x^{10} - 5062413 x^{8} + 19353109 x^{6} - 43145919 x^{4} + 51539184 x^{2} - 25411681 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37196621191331827761794933720088576=2^{30}\cdot 3^{24}\cdot 13^{6}\cdot 71^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{71} a^{12} - \frac{28}{71} a^{10} + \frac{8}{71} a^{8} + \frac{23}{71} a^{6} - \frac{15}{71} a^{4} + \frac{29}{71} a^{2}$, $\frac{1}{71} a^{13} - \frac{28}{71} a^{11} + \frac{8}{71} a^{9} + \frac{23}{71} a^{7} - \frac{15}{71} a^{5} + \frac{29}{71} a^{3}$, $\frac{1}{5041} a^{14} - \frac{28}{5041} a^{12} + \frac{1783}{5041} a^{10} - \frac{1610}{5041} a^{8} + \frac{624}{5041} a^{6} - \frac{2314}{5041} a^{4} - \frac{32}{71} a^{2}$, $\frac{1}{5041} a^{15} - \frac{28}{5041} a^{13} + \frac{1783}{5041} a^{11} - \frac{1610}{5041} a^{9} + \frac{624}{5041} a^{7} - \frac{2314}{5041} a^{5} - \frac{32}{71} a^{3}$, $\frac{1}{9732599250849802477} a^{16} - \frac{555512575021407}{9732599250849802477} a^{14} + \frac{20640331203311088}{9732599250849802477} a^{12} - \frac{4616176315157110236}{9732599250849802477} a^{10} - \frac{4746374992690551340}{9732599250849802477} a^{8} - \frac{163275418461736591}{9732599250849802477} a^{6} + \frac{24494182744192179}{137078862688025387} a^{4} + \frac{549146219893628}{1930688206873597} a^{2} - \frac{7932604282482}{27192791646107}$, $\frac{1}{9732599250849802477} a^{17} - \frac{555512575021407}{9732599250849802477} a^{15} + \frac{20640331203311088}{9732599250849802477} a^{13} - \frac{4616176315157110236}{9732599250849802477} a^{11} - \frac{4746374992690551340}{9732599250849802477} a^{9} - \frac{163275418461736591}{9732599250849802477} a^{7} + \frac{24494182744192179}{137078862688025387} a^{5} + \frac{549146219893628}{1930688206873597} a^{3} - \frac{7932604282482}{27192791646107} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 342981847768 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 4608 |
| The 48 conjugacy class representatives for t18n463 |
| Character table for t18n463 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 3.3.4212.1, 9.9.74724856128.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 71 | Data not computed | ||||||