Normalized defining polynomial
\( x^{18} - 8 x^{17} - 9 x^{16} + 207 x^{15} - 213 x^{14} - 1907 x^{13} + 3519 x^{12} + 7244 x^{11} - 18098 x^{10} - 9525 x^{9} + 36868 x^{8} + 3181 x^{7} - 35376 x^{6} + 2017 x^{5} + 15769 x^{4} - 1586 x^{3} - 2460 x^{2} + 432 x + 27 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(363795314284140453335088294421=7^{14}\cdot 67^{6}\cdot 181^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 67, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{15} a^{15} + \frac{2}{5} a^{13} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} + \frac{4}{15} a^{10} + \frac{2}{15} a^{9} + \frac{2}{5} a^{8} + \frac{1}{15} a^{7} - \frac{4}{15} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{2}{15} a^{3} + \frac{2}{5} a^{2} + \frac{7}{15} a - \frac{1}{5}$, $\frac{1}{45} a^{16} + \frac{2}{15} a^{14} - \frac{2}{15} a^{13} + \frac{1}{5} a^{12} + \frac{19}{45} a^{11} + \frac{17}{45} a^{10} + \frac{2}{15} a^{9} + \frac{16}{45} a^{8} - \frac{19}{45} a^{7} + \frac{4}{9} a^{6} + \frac{1}{9} a^{5} - \frac{17}{45} a^{4} + \frac{7}{15} a^{3} + \frac{22}{45} a^{2} + \frac{4}{15} a$, $\frac{1}{275364213347514735} a^{17} + \frac{192069238747606}{30596023705279415} a^{16} - \frac{2358658481336029}{91788071115838245} a^{15} + \frac{4366036721060311}{91788071115838245} a^{14} - \frac{14580778044201687}{30596023705279415} a^{13} + \frac{2778211656717418}{275364213347514735} a^{12} + \frac{112863435007184261}{275364213347514735} a^{11} + \frac{5928878695758299}{91788071115838245} a^{10} - \frac{16020149815768556}{275364213347514735} a^{9} + \frac{63377835809834582}{275364213347514735} a^{8} + \frac{134735604253009616}{275364213347514735} a^{7} - \frac{123728738531045728}{275364213347514735} a^{6} + \frac{136074546720408538}{275364213347514735} a^{5} + \frac{43252579338235756}{91788071115838245} a^{4} - \frac{24279131928709868}{275364213347514735} a^{3} + \frac{10281395541507214}{91788071115838245} a^{2} - \frac{5903954616159947}{30596023705279415} a + \frac{10540375619730916}{30596023705279415}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 866588373.731 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3\times A_4$ (as 18T60):
| A solvable group of order 144 |
| The 24 conjugacy class representatives for $C_2\times S_3\times A_4$ |
| Character table for $C_2\times S_3\times A_4$ is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.469.1, 6.6.434581.1, 9.9.247691263309.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $67$ | 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 67.6.3.2 | $x^{6} - 4489 x^{2} + 4812208$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 181 | Data not computed | ||||||