Properties

Label 18.18.3620299311...5741.1
Degree $18$
Signature $[18, 0]$
Discriminant $3^{27}\cdot 7^{15}$
Root discriminant $26.30$
Ramified primes $3, 7$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_6 \times C_3$ (as 18T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 24, 72, -170, -534, 405, 1385, -459, -1782, 276, 1287, -90, -546, 15, 135, -1, -18, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 18*x^16 - x^15 + 135*x^14 + 15*x^13 - 546*x^12 - 90*x^11 + 1287*x^10 + 276*x^9 - 1782*x^8 - 459*x^7 + 1385*x^6 + 405*x^5 - 534*x^4 - 170*x^3 + 72*x^2 + 24*x + 1)
 
gp: K = bnfinit(x^18 - 18*x^16 - x^15 + 135*x^14 + 15*x^13 - 546*x^12 - 90*x^11 + 1287*x^10 + 276*x^9 - 1782*x^8 - 459*x^7 + 1385*x^6 + 405*x^5 - 534*x^4 - 170*x^3 + 72*x^2 + 24*x + 1, 1)
 

Normalized defining polynomial

\( x^{18} - 18 x^{16} - x^{15} + 135 x^{14} + 15 x^{13} - 546 x^{12} - 90 x^{11} + 1287 x^{10} + 276 x^{9} - 1782 x^{8} - 459 x^{7} + 1385 x^{6} + 405 x^{5} - 534 x^{4} - 170 x^{3} + 72 x^{2} + 24 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(36202993110042424993725741=3^{27}\cdot 7^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.30$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(63=3^{2}\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{63}(1,·)$, $\chi_{63}(4,·)$, $\chi_{63}(5,·)$, $\chi_{63}(16,·)$, $\chi_{63}(17,·)$, $\chi_{63}(20,·)$, $\chi_{63}(22,·)$, $\chi_{63}(25,·)$, $\chi_{63}(26,·)$, $\chi_{63}(37,·)$, $\chi_{63}(38,·)$, $\chi_{63}(41,·)$, $\chi_{63}(43,·)$, $\chi_{63}(46,·)$, $\chi_{63}(47,·)$, $\chi_{63}(58,·)$, $\chi_{63}(59,·)$, $\chi_{63}(62,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6228406.91508 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_3\times C_6$ (as 18T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 18
The 18 conjugacy class representatives for $C_6 \times C_3$
Character table for $C_6 \times C_3$

Intermediate fields

\(\Q(\sqrt{21}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.1, \(\Q(\zeta_{7})^+\), 3.3.3969.2, 6.6.6751269.1, 6.6.330812181.2, \(\Q(\zeta_{21})^+\), 6.6.330812181.1, 9.9.62523502209.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ R ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
7Data not computed