Normalized defining polynomial
\( x^{18} - 6 x^{17} - 29 x^{16} + 232 x^{15} + 122 x^{14} - 2972 x^{13} + 2218 x^{12} + 15816 x^{11} - 21375 x^{10} - 33384 x^{9} + 61321 x^{8} + 17204 x^{7} - 59508 x^{6} + 13790 x^{5} + 7002 x^{4} - 1052 x^{3} - 340 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(354292059029529242987404048990208=2^{27}\cdot 1129^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1129$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{247} a^{16} + \frac{45}{247} a^{15} - \frac{6}{19} a^{14} - \frac{4}{19} a^{13} - \frac{8}{247} a^{12} - \frac{4}{19} a^{11} + \frac{40}{247} a^{10} - \frac{58}{247} a^{9} - \frac{27}{247} a^{8} - \frac{79}{247} a^{7} + \frac{44}{247} a^{6} + \frac{108}{247} a^{5} - \frac{44}{247} a^{4} - \frac{40}{247} a^{3} - \frac{88}{247} a^{2} + \frac{41}{247} a + \frac{49}{247}$, $\frac{1}{414472240267771870686359} a^{17} - \frac{785842384902962640590}{414472240267771870686359} a^{16} + \frac{9252774866019544700336}{37679294569797442789669} a^{15} - \frac{1166859356632057543680}{31882480020597836206643} a^{14} + \frac{16517097514594210389015}{37679294569797442789669} a^{13} - \frac{78882975309451152800908}{414472240267771870686359} a^{12} - \frac{3895358134078730627102}{21814328435145887930861} a^{11} + \frac{14669441250311918461715}{37679294569797442789669} a^{10} + \frac{7970878544796715832083}{21814328435145887930861} a^{9} + \frac{5041959967491226832121}{414472240267771870686359} a^{8} - \frac{102366164730786038396057}{414472240267771870686359} a^{7} - \frac{106170605968571494157218}{414472240267771870686359} a^{6} + \frac{127649211742329088340062}{414472240267771870686359} a^{5} + \frac{103807582824091100451443}{414472240267771870686359} a^{4} - \frac{23551715266790177602933}{414472240267771870686359} a^{3} - \frac{5964951779576962019084}{31882480020597836206643} a^{2} - \frac{1703386057391525924702}{31882480020597836206643} a - \frac{119872057065317971629720}{414472240267771870686359}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26253722476.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 12 conjugacy class representatives for $D_{18}$ |
| Character table for $D_{18}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 3.3.1129.1, 6.6.652616192.2, 9.9.1624709678881.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 1129 | Data not computed | ||||||