Normalized defining polynomial
\( x^{18} - 39 x^{16} - 6 x^{15} + 576 x^{14} + 132 x^{13} - 4060 x^{12} - 792 x^{11} + 14433 x^{10} + 494 x^{9} - 25785 x^{8} + 5016 x^{7} + 20201 x^{6} - 8406 x^{5} - 4209 x^{4} + 2802 x^{3} - 327 x^{2} - 24 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(351496200956998572502045949952=2^{18}\cdot 3^{24}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(252=2^{2}\cdot 3^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{252}(1,·)$, $\chi_{252}(193,·)$, $\chi_{252}(139,·)$, $\chi_{252}(205,·)$, $\chi_{252}(19,·)$, $\chi_{252}(85,·)$, $\chi_{252}(25,·)$, $\chi_{252}(223,·)$, $\chi_{252}(37,·)$, $\chi_{252}(103,·)$, $\chi_{252}(31,·)$, $\chi_{252}(169,·)$, $\chi_{252}(199,·)$, $\chi_{252}(109,·)$, $\chi_{252}(115,·)$, $\chi_{252}(55,·)$, $\chi_{252}(121,·)$, $\chi_{252}(187,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a$, $\frac{1}{185890316} a^{16} + \frac{9611670}{46472579} a^{15} + \frac{6365726}{46472579} a^{14} - \frac{22608723}{92945158} a^{13} + \frac{3974991}{46472579} a^{12} - \frac{9714415}{46472579} a^{11} + \frac{4908627}{46472579} a^{10} + \frac{19288699}{92945158} a^{9} + \frac{9405847}{185890316} a^{8} - \frac{43654763}{92945158} a^{7} + \frac{5989193}{92945158} a^{6} + \frac{21322593}{92945158} a^{5} - \frac{82717403}{185890316} a^{4} + \frac{20792532}{46472579} a^{3} + \frac{7312037}{92945158} a^{2} - \frac{7188199}{46472579} a - \frac{90036405}{185890316}$, $\frac{1}{190224720498172} a^{17} + \frac{51767}{190224720498172} a^{16} - \frac{8408807421033}{47556180124543} a^{15} - \frac{20503221142855}{95112360249086} a^{14} + \frac{14328663060047}{95112360249086} a^{13} - \frac{8844445783931}{95112360249086} a^{12} + \frac{10831114226953}{95112360249086} a^{11} + \frac{2097557173323}{47556180124543} a^{10} - \frac{647482695153}{190224720498172} a^{9} - \frac{47464515895857}{190224720498172} a^{8} - \frac{7352755760193}{95112360249086} a^{7} - \frac{9272313300594}{47556180124543} a^{6} + \frac{85313479850335}{190224720498172} a^{5} + \frac{52548759849537}{190224720498172} a^{4} - \frac{37419762891199}{95112360249086} a^{3} - \frac{20221526928181}{95112360249086} a^{2} + \frac{34670745269761}{190224720498172} a + \frac{84942862143299}{190224720498172}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 875332910.208 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.1, \(\Q(\zeta_{7})^+\), 3.3.3969.2, 6.6.144027072.1, 6.6.7057326528.2, \(\Q(\zeta_{28})^+\), 6.6.7057326528.1, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||