Normalized defining polynomial
\( x^{18} - 6 x^{17} - 42 x^{16} + 320 x^{15} + 116 x^{14} - 4309 x^{13} + 5483 x^{12} + 18970 x^{11} - 42448 x^{10} - 22590 x^{9} + 108365 x^{8} - 23256 x^{7} - 107909 x^{6} + 46896 x^{5} + 44304 x^{4} - 14953 x^{3} - 8607 x^{2} - 505 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(35041425235206245760443200000000=2^{12}\cdot 5^{8}\cdot 37^{6}\cdot 107^{3}\cdot 191^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 107, 191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{9} a^{11} + \frac{4}{9} a^{9} + \frac{4}{9} a^{8} - \frac{1}{9} a^{7} - \frac{1}{3} a^{6} - \frac{1}{9} a^{5} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} + \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{141795} a^{16} + \frac{389}{15755} a^{15} + \frac{5531}{141795} a^{14} - \frac{4234}{47265} a^{13} + \frac{50398}{141795} a^{12} - \frac{6626}{28359} a^{11} + \frac{17806}{141795} a^{10} - \frac{7632}{15755} a^{9} - \frac{12758}{141795} a^{8} + \frac{14146}{141795} a^{7} - \frac{47716}{141795} a^{6} + \frac{23968}{141795} a^{5} - \frac{334}{141795} a^{4} + \frac{20011}{141795} a^{3} + \frac{17452}{141795} a^{2} + \frac{4534}{47265} a - \frac{3346}{141795}$, $\frac{1}{40041688200996225393585} a^{17} - \frac{24819123928753042}{40041688200996225393585} a^{16} - \frac{238269050218451160738}{4449076466777358377065} a^{15} - \frac{5440535514810249578}{616025972323018852209} a^{14} - \frac{17086143551912510258756}{40041688200996225393585} a^{13} - \frac{17289033689875403197}{292275096357636681705} a^{12} + \frac{3323217092909517625472}{13347229400332075131195} a^{11} + \frac{11514822448385259079199}{40041688200996225393585} a^{10} + \frac{8010143985454101229781}{40041688200996225393585} a^{9} - \frac{2531360355138157912300}{8008337640199245078717} a^{8} + \frac{5523721976532741409282}{13347229400332075131195} a^{7} + \frac{9844888896060945854951}{40041688200996225393585} a^{6} - \frac{1606072871853999139081}{13347229400332075131195} a^{5} + \frac{15787733072843511408188}{40041688200996225393585} a^{4} + \frac{18600968462221827178979}{40041688200996225393585} a^{3} - \frac{13461230285382417853564}{40041688200996225393585} a^{2} + \frac{4472028590885207067806}{13347229400332075131195} a + \frac{10555143837364690921148}{40041688200996225393585}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10076887573.6 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 44 conjugacy class representatives for t18n394 |
| Character table for t18n394 is not computed |
Intermediate fields
| 3.3.148.1, 6.6.11191301200.1, 9.9.331262515520.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 37 | Data not computed | ||||||
| 107 | Data not computed | ||||||
| 191 | Data not computed | ||||||