Normalized defining polynomial
\( x^{18} - 66 x^{16} - 2 x^{15} + 1359 x^{14} - 534 x^{13} - 11436 x^{12} + 9036 x^{11} + 44127 x^{10} - 49264 x^{9} - 79398 x^{8} + 120774 x^{7} + 49093 x^{6} - 136242 x^{5} + 26796 x^{4} + 52664 x^{3} - 33408 x^{2} + 6960 x - 464 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(342060412240514805418294650077184=2^{24}\cdot 3^{18}\cdot 29^{5}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{770809623693938416385752} a^{17} + \frac{11457948231725615390551}{96351202961742302048219} a^{16} + \frac{17293835694081654133437}{385404811846969208192876} a^{15} - \frac{434738568350604969411}{96351202961742302048219} a^{14} - \frac{10980308724709810797629}{770809623693938416385752} a^{13} - \frac{5096560946311737073743}{96351202961742302048219} a^{12} + \frac{3201465983367584299821}{192702405923484604096438} a^{11} - \frac{20964921111923176305151}{192702405923484604096438} a^{10} - \frac{102576174357464081611081}{770809623693938416385752} a^{9} + \frac{5216112631127016646115}{192702405923484604096438} a^{8} + \frac{70001059581279160621447}{385404811846969208192876} a^{7} + \frac{4069576987470210884947}{192702405923484604096438} a^{6} + \frac{323843329587941229299921}{770809623693938416385752} a^{5} - \frac{63644882261091436164941}{192702405923484604096438} a^{4} + \frac{24996170524034651229147}{192702405923484604096438} a^{3} - \frac{45620838779247403578444}{96351202961742302048219} a^{2} - \frac{47402891628775499801686}{96351202961742302048219} a + \frac{44604689593115310320355}{96351202961742302048219}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93539782296.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 70 conjugacy class representatives for t18n396 are not computed |
| Character table for t18n396 is not computed |
Intermediate fields
| 3.3.148.1, 6.6.2540864.1, 9.9.858603030690816.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.8 | $x^{6} + 2 x + 2$ | $6$ | $1$ | $6$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ |
| 2.12.18.79 | $x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{2} - 2$ | $12$ | $1$ | $18$ | $C_2 \times S_4$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $29$ | 29.6.5.1 | $x^{6} - 29$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |