Properties

Label 18.18.3420565472...3457.1
Degree $18$
Signature $[18, 0]$
Discriminant $17^{9}\cdot 19^{16}$
Root discriminant $56.48$
Ramified primes $17, 19$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{18}$ (as 18T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-191, 12154, -43388, -41471, 269024, -118682, -350891, 251979, 161417, -146783, -29140, 37663, 1076, -4779, 275, 294, -32, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 7*x^17 - 32*x^16 + 294*x^15 + 275*x^14 - 4779*x^13 + 1076*x^12 + 37663*x^11 - 29140*x^10 - 146783*x^9 + 161417*x^8 + 251979*x^7 - 350891*x^6 - 118682*x^5 + 269024*x^4 - 41471*x^3 - 43388*x^2 + 12154*x - 191)
 
gp: K = bnfinit(x^18 - 7*x^17 - 32*x^16 + 294*x^15 + 275*x^14 - 4779*x^13 + 1076*x^12 + 37663*x^11 - 29140*x^10 - 146783*x^9 + 161417*x^8 + 251979*x^7 - 350891*x^6 - 118682*x^5 + 269024*x^4 - 41471*x^3 - 43388*x^2 + 12154*x - 191, 1)
 

Normalized defining polynomial

\( x^{18} - 7 x^{17} - 32 x^{16} + 294 x^{15} + 275 x^{14} - 4779 x^{13} + 1076 x^{12} + 37663 x^{11} - 29140 x^{10} - 146783 x^{9} + 161417 x^{8} + 251979 x^{7} - 350891 x^{6} - 118682 x^{5} + 269024 x^{4} - 41471 x^{3} - 43388 x^{2} + 12154 x - 191 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(34205654728777159191037355893457=17^{9}\cdot 19^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $56.48$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $17, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(323=17\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{323}(256,·)$, $\chi_{323}(1,·)$, $\chi_{323}(137,·)$, $\chi_{323}(271,·)$, $\chi_{323}(16,·)$, $\chi_{323}(273,·)$, $\chi_{323}(220,·)$, $\chi_{323}(290,·)$, $\chi_{323}(35,·)$, $\chi_{323}(101,·)$, $\chi_{323}(169,·)$, $\chi_{323}(237,·)$, $\chi_{323}(239,·)$, $\chi_{323}(305,·)$, $\chi_{323}(118,·)$, $\chi_{323}(120,·)$, $\chi_{323}(188,·)$, $\chi_{323}(254,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{269705256860012329346369815362015263507} a^{17} - \frac{28590763442167704613012469214857821881}{269705256860012329346369815362015263507} a^{16} + \frac{71231950767800284092403172530807533808}{269705256860012329346369815362015263507} a^{15} + \frac{81961738872427785118660556317327184161}{269705256860012329346369815362015263507} a^{14} + \frac{12022051914415913023482402472646881123}{269705256860012329346369815362015263507} a^{13} - \frac{100729246868692134591493974624470119070}{269705256860012329346369815362015263507} a^{12} + \frac{102666630009180058782614132465763512351}{269705256860012329346369815362015263507} a^{11} - \frac{33805429253479703256034304206346512814}{269705256860012329346369815362015263507} a^{10} + \frac{127073179197050800207019306490450354772}{269705256860012329346369815362015263507} a^{9} - \frac{54976270187186864640794176490203682574}{269705256860012329346369815362015263507} a^{8} + \frac{35842865233268536189555421090361461851}{269705256860012329346369815362015263507} a^{7} + \frac{77265226650497830818160536283080664973}{269705256860012329346369815362015263507} a^{6} - \frac{124815737422564347309619506230600546859}{269705256860012329346369815362015263507} a^{5} - \frac{57489881253853958083136305761823179348}{269705256860012329346369815362015263507} a^{4} + \frac{30247942716775517275481898410465084322}{269705256860012329346369815362015263507} a^{3} + \frac{849293054802072599554422953383883098}{1786127528874253836730925929549769957} a^{2} - \frac{75988503471245088210278576440192005494}{269705256860012329346369815362015263507} a + \frac{66787555508311009042976650510072229808}{269705256860012329346369815362015263507}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6552525312.42 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{18}$ (as 18T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 18
The 18 conjugacy class representatives for $C_{18}$
Character table for $C_{18}$

Intermediate fields

\(\Q(\sqrt{17}) \), 3.3.361.1, 6.6.640267073.1, \(\Q(\zeta_{19})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ $18$ $18$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ R R $18$ $18$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ $18$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
17Data not computed
$19$19.9.8.8$x^{9} - 19$$9$$1$$8$$C_9$$[\ ]_{9}$
19.9.8.8$x^{9} - 19$$9$$1$$8$$C_9$$[\ ]_{9}$