Properties

Label 18.18.3366287501...3968.1
Degree $18$
Signature $[18, 0]$
Discriminant $2^{18}\cdot 17^{9}\cdot 101^{8}$
Root discriminant $64.13$
Ramified primes $2, 17, 101$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $S_3\times S_4$ (as 18T69)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1028, 14040, -83608, 56496, 229580, -202992, -257392, 207028, 133768, -102936, -33404, 27660, 3509, -3984, -17, 286, -21, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 8*x^17 - 21*x^16 + 286*x^15 - 17*x^14 - 3984*x^13 + 3509*x^12 + 27660*x^11 - 33404*x^10 - 102936*x^9 + 133768*x^8 + 207028*x^7 - 257392*x^6 - 202992*x^5 + 229580*x^4 + 56496*x^3 - 83608*x^2 + 14040*x + 1028)
 
gp: K = bnfinit(x^18 - 8*x^17 - 21*x^16 + 286*x^15 - 17*x^14 - 3984*x^13 + 3509*x^12 + 27660*x^11 - 33404*x^10 - 102936*x^9 + 133768*x^8 + 207028*x^7 - 257392*x^6 - 202992*x^5 + 229580*x^4 + 56496*x^3 - 83608*x^2 + 14040*x + 1028, 1)
 

Normalized defining polynomial

\( x^{18} - 8 x^{17} - 21 x^{16} + 286 x^{15} - 17 x^{14} - 3984 x^{13} + 3509 x^{12} + 27660 x^{11} - 33404 x^{10} - 102936 x^{9} + 133768 x^{8} + 207028 x^{7} - 257392 x^{6} - 202992 x^{5} + 229580 x^{4} + 56496 x^{3} - 83608 x^{2} + 14040 x + 1028 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(336628750145214343319449527123968=2^{18}\cdot 17^{9}\cdot 101^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $64.13$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17, 101$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} + \frac{1}{8} a^{11} - \frac{1}{2} a^{10} - \frac{3}{8} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{2} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{203851522910642257097875192} a^{17} - \frac{164740808263503463452501}{101925761455321128548937596} a^{16} - \frac{815241749423374263455955}{50962880727660564274468798} a^{15} + \frac{11799968316757571826008543}{101925761455321128548937596} a^{14} - \frac{5972853105334008385452437}{50962880727660564274468798} a^{13} - \frac{1792217660358823186421773}{101925761455321128548937596} a^{12} + \frac{41756309823784136042047981}{101925761455321128548937596} a^{11} - \frac{41022527068184341531104627}{101925761455321128548937596} a^{10} - \frac{54081842862225794677474127}{203851522910642257097875192} a^{9} + \frac{2626084529946858165661752}{25481440363830282137234399} a^{8} - \frac{20223721564432891191457819}{50962880727660564274468798} a^{7} + \frac{3746380439234714805692281}{101925761455321128548937596} a^{6} + \frac{14802566087476336177890615}{101925761455321128548937596} a^{5} + \frac{38966296178907297486666139}{101925761455321128548937596} a^{4} - \frac{4130159793554368929999879}{101925761455321128548937596} a^{3} - \frac{19692456491362218732780813}{50962880727660564274468798} a^{2} + \frac{14782237980178592523465821}{50962880727660564274468798} a - \frac{8435139719348758815957975}{50962880727660564274468798}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 38549321161.7 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_3\times S_4$ (as 18T69):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 144
The 15 conjugacy class representatives for $S_3\times S_4$
Character table for $S_3\times S_4$

Intermediate fields

3.3.404.1, 3.3.6868.1, 6.6.3207520832.1, 9.9.32719920007232.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 12 sibling: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ R ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.6.7$x^{6} + 2 x^{2} + 2 x + 2$$6$$1$$6$$S_4$$[4/3, 4/3]_{3}^{2}$
2.12.12.28$x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$$6$$2$$12$$S_4$$[4/3, 4/3]_{3}^{2}$
$17$17.6.3.1$x^{6} - 34 x^{4} + 289 x^{2} - 44217$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
17.12.6.1$x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
101Data not computed