Normalized defining polynomial
\( x^{18} - 48 x^{16} - 4 x^{15} + 756 x^{14} - 114 x^{13} - 5266 x^{12} + 1908 x^{11} + 18303 x^{10} - 10182 x^{9} - 32508 x^{8} + 24654 x^{7} + 26549 x^{6} - 27612 x^{5} - 5070 x^{4} + 11648 x^{3} - 2808 x^{2} - 312 x + 104 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33403788296933455481250074591232=2^{24}\cdot 3^{18}\cdot 7^{12}\cdot 13^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{6} a^{14} - \frac{1}{3} a^{8} - \frac{1}{2} a^{6} - \frac{1}{3} a^{5} - \frac{1}{6} a^{2}$, $\frac{1}{126} a^{15} + \frac{1}{14} a^{14} + \frac{1}{21} a^{13} + \frac{8}{63} a^{12} + \frac{2}{7} a^{11} + \frac{4}{21} a^{10} - \frac{16}{63} a^{9} + \frac{3}{7} a^{8} - \frac{3}{14} a^{7} - \frac{7}{18} a^{6} - \frac{1}{7} a^{5} + \frac{2}{21} a^{4} - \frac{5}{14} a^{3} + \frac{3}{14} a^{2} + \frac{5}{21} a + \frac{10}{63}$, $\frac{1}{252} a^{16} - \frac{1}{21} a^{14} + \frac{1}{63} a^{13} - \frac{2}{21} a^{12} + \frac{13}{42} a^{11} - \frac{61}{126} a^{10} - \frac{1}{7} a^{9} - \frac{1}{28} a^{8} + \frac{55}{126} a^{7} - \frac{5}{21} a^{6} - \frac{13}{42} a^{5} - \frac{37}{84} a^{4} + \frac{1}{21} a^{3} + \frac{17}{42} a^{2} - \frac{10}{63} a - \frac{1}{21}$, $\frac{1}{96511385813691492} a^{17} + \frac{108795635268599}{96511385813691492} a^{16} + \frac{8627169736624}{8042615484474291} a^{15} + \frac{3789277576937513}{48255692906845746} a^{14} + \frac{787864044546722}{24127846453422873} a^{13} + \frac{436447254278569}{5361743656316194} a^{12} - \frac{4968771699379037}{24127846453422873} a^{11} + \frac{9941913882081283}{48255692906845746} a^{10} + \frac{7317611879463701}{32170461937897164} a^{9} + \frac{27702182240682743}{96511385813691492} a^{8} + \frac{3248480879753543}{6893670415263678} a^{7} - \frac{3027059590579505}{8042615484474291} a^{6} - \frac{7105073322100343}{32170461937897164} a^{5} - \frac{1972553770129997}{4595780276842452} a^{4} - \frac{30639429118837}{765963379473742} a^{3} - \frac{4956761293590289}{24127846453422873} a^{2} + \frac{54199348278622}{24127846453422873} a + \frac{2792564324912651}{8042615484474291}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11075540258.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1296 |
| The 56 conjugacy class representatives for t18n282 are not computed |
| Character table for t18n282 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 6.6.1997632.1, 9.9.25046451847872.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | $18$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ |
| 2.12.18.57 | $x^{12} + 14 x^{11} + 16 x^{10} + 6 x^{8} + 4 x^{7} - 4 x^{6} + 8 x^{2} + 16 x - 8$ | $4$ | $3$ | $18$ | $C_2^2 \times A_4$ | $[2, 2, 2]^{6}$ | |
| $3$ | 3.9.9.5 | $x^{9} + 3 x^{7} + 3 x^{6} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ |
| 3.9.9.5 | $x^{9} + 3 x^{7} + 3 x^{6} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.5.6 | $x^{6} + 416$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |