Normalized defining polynomial
\( x^{18} - 38 x^{16} + 541 x^{14} - 3935 x^{12} + 16280 x^{10} - 39568 x^{8} + 55652 x^{6} - 42560 x^{4} + 15520 x^{2} - 1936 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(324911722849263597378972155904=2^{22}\cdot 3^{14}\cdot 503^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 503$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{10} + \frac{1}{12} a^{8} - \frac{1}{4} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{6} a^{11} + \frac{1}{12} a^{9} - \frac{1}{4} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{24} a^{14} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} - \frac{1}{24} a^{8} - \frac{1}{4} a^{7} + \frac{5}{12} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3}$, $\frac{1}{264} a^{15} + \frac{1}{132} a^{13} + \frac{5}{264} a^{11} + \frac{49}{264} a^{9} + \frac{14}{33} a^{7} - \frac{8}{33} a^{5} - \frac{5}{22} a^{3} + \frac{1}{33} a$, $\frac{1}{96132168} a^{16} + \frac{24619}{4005507} a^{14} - \frac{2746343}{96132168} a^{12} + \frac{1058159}{10681352} a^{10} + \frac{734647}{48066084} a^{8} + \frac{472418}{4005507} a^{6} - \frac{956971}{24033042} a^{4} + \frac{2506252}{12016521} a^{2} - \frac{254440}{1092411}$, $\frac{1}{192264336} a^{17} - \frac{22903}{32044056} a^{15} - \frac{382081}{17478576} a^{13} - \frac{14061341}{64088112} a^{11} - \frac{8554033}{48066084} a^{9} - \frac{1}{2} a^{8} + \frac{2054711}{5340676} a^{7} - \frac{330277}{12016521} a^{5} - \frac{1}{2} a^{4} - \frac{2024107}{12016521} a^{3} - \frac{1}{2} a^{2} - \frac{1763557}{12016521} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1142011664.98 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_3\times A_4):S_3$ (as 18T108):
| A solvable group of order 216 |
| The 19 conjugacy class representatives for $(C_3\times A_4):S_3$ |
| Character table for $(C_3\times A_4):S_3$ |
Intermediate fields
| 3.3.1509.1, 6.6.145733184.1, 9.9.4453205336784.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.12.16.20 | $x^{12} + 4 x^{10} + x^{8} + 4 x^{6} - x^{4} + 8 x^{2} - 1$ | $6$ | $2$ | $16$ | 12T42 | $[2, 2]_{3}^{6}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.12.14.15 | $x^{12} + 9 x^{11} - 6 x^{10} + 6 x^{9} - 3 x^{8} + 9 x^{7} + 6 x^{6} - 9 x^{5} - 9 x^{4} - 9 x^{3} - 9 x^{2} + 9$ | $6$ | $2$ | $14$ | $C_6\times S_3$ | $[3/2]_{2}^{6}$ | |
| 503 | Data not computed | ||||||