Normalized defining polynomial
\( x^{18} - 7 x^{17} - 23 x^{16} + 238 x^{15} + 67 x^{14} - 3057 x^{13} + 2147 x^{12} + 18205 x^{11} - 22172 x^{10} - 48410 x^{9} + 80696 x^{8} + 38369 x^{7} - 112670 x^{6} + 27104 x^{5} + 41513 x^{4} - 25352 x^{3} + 2633 x^{2} + 1022 x - 191 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3058776789325072365774692364013=13^{9}\cdot 19^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(247=13\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{247}(64,·)$, $\chi_{247}(1,·)$, $\chi_{247}(66,·)$, $\chi_{247}(131,·)$, $\chi_{247}(196,·)$, $\chi_{247}(194,·)$, $\chi_{247}(142,·)$, $\chi_{247}(77,·)$, $\chi_{247}(144,·)$, $\chi_{247}(92,·)$, $\chi_{247}(25,·)$, $\chi_{247}(207,·)$, $\chi_{247}(220,·)$, $\chi_{247}(157,·)$, $\chi_{247}(168,·)$, $\chi_{247}(233,·)$, $\chi_{247}(235,·)$, $\chi_{247}(118,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3366969913669514036406540857231} a^{17} - \frac{180068769397593610820039000072}{3366969913669514036406540857231} a^{16} + \frac{1491751870375529560298285325374}{3366969913669514036406540857231} a^{15} + \frac{1178811404046750978242720418952}{3366969913669514036406540857231} a^{14} - \frac{1446408662700153273280612403511}{3366969913669514036406540857231} a^{13} - \frac{1543966397945289711687832132656}{3366969913669514036406540857231} a^{12} - \frac{1074983562553987161931164563216}{3366969913669514036406540857231} a^{11} + \frac{529292718475768992071479111013}{3366969913669514036406540857231} a^{10} - \frac{795037352408329159527720202760}{3366969913669514036406540857231} a^{9} + \frac{313638757703288982503117219574}{3366969913669514036406540857231} a^{8} - \frac{1669854595777211040527259636876}{3366969913669514036406540857231} a^{7} - \frac{1044200514158512633129783864587}{3366969913669514036406540857231} a^{6} - \frac{1419572466366230498130993927027}{3366969913669514036406540857231} a^{5} + \frac{657160163940232621875392990042}{3366969913669514036406540857231} a^{4} + \frac{1638268026873452266258344673171}{3366969913669514036406540857231} a^{3} + \frac{1020899281370359255486389092382}{3366969913669514036406540857231} a^{2} + \frac{810480533934175512929738485757}{3366969913669514036406540857231} a + \frac{978713262736902235816357094295}{3366969913669514036406540857231}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1710187464.86 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.361.1, 6.6.286315237.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | $18$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 19 | Data not computed | ||||||