Normalized defining polynomial
\( x^{18} - 54 x^{16} + 1143 x^{14} - 12240 x^{12} + 71820 x^{10} - 233244 x^{8} + 397746 x^{6} - 302157 x^{4} + 58482 x^{2} - 3249 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2978215245878017156369471672418304=2^{18}\cdot 3^{32}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{57} a^{12} + \frac{1}{19} a^{10} + \frac{1}{19} a^{8} + \frac{5}{19} a^{6}$, $\frac{1}{57} a^{13} + \frac{1}{19} a^{11} + \frac{1}{19} a^{9} + \frac{5}{19} a^{7}$, $\frac{1}{114} a^{14} - \frac{1}{19} a^{10} + \frac{1}{19} a^{8} + \frac{2}{19} a^{6} - \frac{1}{2}$, $\frac{1}{114} a^{15} - \frac{1}{19} a^{11} + \frac{1}{19} a^{9} + \frac{2}{19} a^{7} - \frac{1}{2} a$, $\frac{1}{32183973938724} a^{16} - \frac{81717596639}{32183973938724} a^{14} - \frac{7389721587}{5363995656454} a^{12} - \frac{911982767107}{16091986969362} a^{10} - \frac{2252354645307}{5363995656454} a^{8} + \frac{2427842005219}{5363995656454} a^{6} + \frac{4462191952}{141157780433} a^{4} - \frac{122043278225}{564631121732} a^{2} - \frac{55715097137}{564631121732}$, $\frac{1}{32183973938724} a^{17} - \frac{81717596639}{32183973938724} a^{15} - \frac{7389721587}{5363995656454} a^{13} - \frac{911982767107}{16091986969362} a^{11} - \frac{1393068279467}{16091986969362} a^{9} + \frac{2427842005219}{5363995656454} a^{7} + \frac{4462191952}{141157780433} a^{5} - \frac{122043278225}{564631121732} a^{3} - \frac{55715097137}{564631121732} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 211204307630 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6^2:C_3$ (as 18T48):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_6^2:C_3$ |
| Character table for $C_6^2:C_3$ |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 6.6.151585344.1, 9.9.5609891727441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| 2.6.6.1 | $x^{6} + x^{2} - 1$ | $2$ | $3$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $3$ | 3.9.16.1 | $x^{9} + 3 x^{8} + 3 x^{6} + 3$ | $9$ | $1$ | $16$ | $C_3^2:C_3$ | $[2, 2]^{3}$ |
| 3.9.16.1 | $x^{9} + 3 x^{8} + 3 x^{6} + 3$ | $9$ | $1$ | $16$ | $C_3^2:C_3$ | $[2, 2]^{3}$ | |
| $19$ | 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.6.5.6 | $x^{6} + 19456$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.4 | $x^{6} + 76$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |