Properties

Label 18.18.2948436475...3216.2
Degree $18$
Signature $[18, 0]$
Discriminant $2^{18}\cdot 3^{24}\cdot 73^{5}\cdot 577^{3}$
Root discriminant $82.22$
Ramified primes $2, 3, 73, 577$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 18T401

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-224462809, 0, 416717142, 0, -274075653, 0, 89604126, 0, -16535280, 0, 1824759, 0, -122654, 0, 4917, 0, -108, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^18 - 108*x^16 + 4917*x^14 - 122654*x^12 + 1824759*x^10 - 16535280*x^8 + 89604126*x^6 - 274075653*x^4 + 416717142*x^2 - 224462809)
 
gp: K = bnfinit(x^18 - 108*x^16 + 4917*x^14 - 122654*x^12 + 1824759*x^10 - 16535280*x^8 + 89604126*x^6 - 274075653*x^4 + 416717142*x^2 - 224462809, 1)
 

Normalized defining polynomial

\( x^{18} - 108 x^{16} + 4917 x^{14} - 122654 x^{12} + 1824759 x^{10} - 16535280 x^{8} + 89604126 x^{6} - 274075653 x^{4} + 416717142 x^{2} - 224462809 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $18$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[18, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(29484364756172150616218056704393216=2^{18}\cdot 3^{24}\cdot 73^{5}\cdot 577^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $82.22$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 73, 577$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{73} a^{14} - \frac{35}{73} a^{12} + \frac{26}{73} a^{10} - \frac{14}{73} a^{8} - \frac{22}{73} a^{6} + \frac{23}{73} a^{4} - \frac{16}{73} a^{2}$, $\frac{1}{73} a^{15} - \frac{35}{73} a^{13} + \frac{26}{73} a^{11} - \frac{14}{73} a^{9} - \frac{22}{73} a^{7} + \frac{23}{73} a^{5} - \frac{16}{73} a^{3}$, $\frac{1}{440954185618646327902177} a^{16} + \frac{2995342499136730450842}{440954185618646327902177} a^{14} + \frac{101113354871491378421297}{440954185618646327902177} a^{12} + \frac{178653982531600822631730}{440954185618646327902177} a^{10} - \frac{97578607050004751145546}{440954185618646327902177} a^{8} + \frac{106861950127010322748874}{440954185618646327902177} a^{6} + \frac{101223957743992911503259}{440954185618646327902177} a^{4} + \frac{1593493671452433986870}{6040468296145840108249} a^{2} + \frac{33295290150301031701}{82746141043093700113}$, $\frac{1}{440954185618646327902177} a^{17} + \frac{2995342499136730450842}{440954185618646327902177} a^{15} + \frac{101113354871491378421297}{440954185618646327902177} a^{13} + \frac{178653982531600822631730}{440954185618646327902177} a^{11} - \frac{97578607050004751145546}{440954185618646327902177} a^{9} + \frac{106861950127010322748874}{440954185618646327902177} a^{7} + \frac{101223957743992911503259}{440954185618646327902177} a^{5} + \frac{1593493671452433986870}{6040468296145840108249} a^{3} + \frac{33295290150301031701}{82746141043093700113} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $17$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 274947144139 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

18T401:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2592
The 44 conjugacy class representatives for t18n401
Character table for t18n401 is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\), 6.6.17686776384.1, 9.9.22384826361.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.9.12.1$x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$$3$$3$$12$$C_3^2$$[2]^{3}$
3.9.12.1$x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$$3$$3$$12$$C_3^2$$[2]^{3}$
73Data not computed
577Data not computed