Normalized defining polynomial
\( x^{18} - 6 x^{17} - 30 x^{16} + 206 x^{15} + 318 x^{14} - 2710 x^{13} - 1134 x^{12} + 17302 x^{11} - 3335 x^{10} - 56382 x^{9} + 35668 x^{8} + 85538 x^{7} - 89615 x^{6} - 36518 x^{5} + 75010 x^{4} - 18108 x^{3} - 11472 x^{2} + 5904 x - 664 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28995509861185340166459512061952=2^{18}\cdot 7^{15}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $55.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(364=2^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{364}(1,·)$, $\chi_{364}(131,·)$, $\chi_{364}(261,·)$, $\chi_{364}(9,·)$, $\chi_{364}(139,·)$, $\chi_{364}(81,·)$, $\chi_{364}(339,·)$, $\chi_{364}(87,·)$, $\chi_{364}(27,·)$, $\chi_{364}(29,·)$, $\chi_{364}(159,·)$, $\chi_{364}(3,·)$, $\chi_{364}(289,·)$, $\chi_{364}(165,·)$, $\chi_{364}(113,·)$, $\chi_{364}(243,·)$, $\chi_{364}(53,·)$, $\chi_{364}(55,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{13} + \frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{14} - \frac{1}{6} a^{12} - \frac{1}{6} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{15} + \frac{1}{6} a^{12} - \frac{1}{6} a^{11} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{346649172} a^{16} - \frac{2363795}{28887431} a^{15} - \frac{1993519}{173324586} a^{14} - \frac{9670151}{173324586} a^{13} + \frac{9600349}{173324586} a^{12} - \frac{38643157}{173324586} a^{11} - \frac{14535287}{86662293} a^{10} - \frac{21785807}{173324586} a^{9} - \frac{34307885}{346649172} a^{8} - \frac{11776557}{28887431} a^{7} - \frac{29717441}{173324586} a^{6} + \frac{27172157}{173324586} a^{5} - \frac{112500707}{346649172} a^{4} - \frac{32221526}{86662293} a^{3} - \frac{29275142}{86662293} a^{2} - \frac{25801805}{86662293} a + \frac{6732626}{28887431}$, $\frac{1}{877019978615796} a^{17} - \frac{134837}{877019978615796} a^{16} + \frac{7509556134469}{219254994653949} a^{15} + \frac{2281767164860}{73084998217983} a^{14} - \frac{3780472648323}{48723332145322} a^{13} + \frac{53661117000121}{438509989307898} a^{12} + \frac{45691453406905}{438509989307898} a^{11} + \frac{2761650963294}{24361666072661} a^{10} + \frac{144600299944897}{877019978615796} a^{9} + \frac{151824217766173}{877019978615796} a^{8} + \frac{1380970851589}{438509989307898} a^{7} + \frac{33984927596209}{219254994653949} a^{6} + \frac{108677817821405}{877019978615796} a^{5} - \frac{145473481330691}{292339992871932} a^{4} + \frac{50043615837688}{219254994653949} a^{3} - \frac{216002250046549}{438509989307898} a^{2} - \frac{53510587382135}{219254994653949} a + \frac{79573740400030}{219254994653949}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10619522376.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), 3.3.169.1, 3.3.8281.1, 3.3.8281.2, \(\Q(\zeta_{7})^+\), 6.6.626971072.1, 6.6.30721582528.1, 6.6.30721582528.2, \(\Q(\zeta_{28})^+\), 9.9.567869252041.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $13$ | 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |