Normalized defining polynomial
\( x^{18} - 6 x^{17} - 1203 x^{16} + 5803 x^{15} + 564422 x^{14} - 2008877 x^{13} - 138259175 x^{12} + 310352634 x^{11} + 19564003502 x^{10} - 18478540310 x^{9} - 1641446042372 x^{8} - 430106475009 x^{7} + 79137357597720 x^{6} + 102854556530922 x^{5} - 1961423812874180 x^{4} - 4080661720281731 x^{3} + 18411988700363282 x^{2} + 43304926924763136 x - 20692705747770376 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28987572419970805536207011774741633410948166198117=241\cdot 1033\cdot 3301\cdot 32009^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $559.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $241, 1033, 3301, 32009$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{64018} a^{14} + \frac{1046}{32009} a^{13} - \frac{31567}{64018} a^{12} - \frac{14273}{32009} a^{11} - \frac{28007}{64018} a^{10} - \frac{8913}{64018} a^{9} + \frac{7257}{64018} a^{8} + \frac{25915}{64018} a^{7} - \frac{10313}{32009} a^{6} - \frac{9927}{64018} a^{5} - \frac{7635}{32009} a^{4} + \frac{7673}{64018} a^{3} - \frac{4493}{64018} a^{2} - \frac{29219}{64018} a - \frac{8510}{32009}$, $\frac{1}{64018} a^{15} + \frac{9211}{64018} a^{13} + \frac{3530}{32009} a^{12} + \frac{25449}{64018} a^{11} + \frac{5261}{64018} a^{10} + \frac{24015}{64018} a^{9} + \frac{16537}{64018} a^{8} - \frac{5780}{32009} a^{7} - \frac{8467}{64018} a^{6} + \frac{5091}{32009} a^{5} + \frac{7531}{64018} a^{4} + \frac{12109}{64018} a^{3} + \frac{23509}{64018} a^{2} - \frac{14031}{32009} a + \frac{5916}{32009}$, $\frac{1}{8518325537434} a^{16} + \frac{13428297}{4259162768717} a^{15} + \frac{59818393}{8518325537434} a^{14} - \frac{938276628183}{4259162768717} a^{13} + \frac{2785744834897}{8518325537434} a^{12} + \frac{2387717035071}{8518325537434} a^{11} + \frac{700338990967}{8518325537434} a^{10} - \frac{728694111245}{8518325537434} a^{9} - \frac{953887199656}{4259162768717} a^{8} + \frac{832058861871}{8518325537434} a^{7} + \frac{49558236784}{4259162768717} a^{6} + \frac{2790101716539}{8518325537434} a^{5} - \frac{2598556833503}{8518325537434} a^{4} + \frac{2161019981309}{8518325537434} a^{3} - \frac{594986935420}{4259162768717} a^{2} - \frac{386828175409}{4259162768717} a + \frac{328416008154}{4259162768717}$, $\frac{1}{177196015850076316319656020307999545415196398748859575425596196053398391246858658999466417855167279765964} a^{17} + \frac{1670511981762310354873865095861552568379436098605097165590577964684090474447981970543472334}{44299003962519079079914005076999886353799099687214893856399049013349597811714664749866604463791819941491} a^{16} - \frac{245367315598261436729961191231264736744149975771311678572688410055550921969172491778820956058248519}{177196015850076316319656020307999545415196398748859575425596196053398391246858658999466417855167279765964} a^{15} - \frac{1334266502802788432926278615499833024098466180527002176331338984998055348233543337002651626643560589}{177196015850076316319656020307999545415196398748859575425596196053398391246858658999466417855167279765964} a^{14} - \frac{7317651301031273188929602124751660898927402931685469282253456569208730798001848348323695594081049113966}{44299003962519079079914005076999886353799099687214893856399049013349597811714664749866604463791819941491} a^{13} - \frac{10536638149232311225928334971208316695760768044062134462233017349463619464907533237280332378903069571803}{177196015850076316319656020307999545415196398748859575425596196053398391246858658999466417855167279765964} a^{12} - \frac{54771416754891620228260821746269089172714643414250858263184777588628117090573556711872478802034098910013}{177196015850076316319656020307999545415196398748859575425596196053398391246858658999466417855167279765964} a^{11} - \frac{8039367559625682720680081912870361353484916135248152252070589397110347579589774378742879009061407216249}{88598007925038158159828010153999772707598199374429787712798098026699195623429329499733208927583639882982} a^{10} - \frac{17262213468107830753007119343466609844042180537773154895668193593338015166181090024516858433589668242182}{44299003962519079079914005076999886353799099687214893856399049013349597811714664749866604463791819941491} a^{9} - \frac{21751055675932964066605480392528388277386600693262078028630069060009404984996336015907241369708523539030}{44299003962519079079914005076999886353799099687214893856399049013349597811714664749866604463791819941491} a^{8} - \frac{7228983244968174381916895809248840094952550641438404407213117816450413909330341190782508502676411761607}{88598007925038158159828010153999772707598199374429787712798098026699195623429329499733208927583639882982} a^{7} - \frac{78324819590910719207399282921877474725260488022411004081294063352809282646691031163964591933851154370565}{177196015850076316319656020307999545415196398748859575425596196053398391246858658999466417855167279765964} a^{6} - \frac{1334028203701853474996008513997982520183998739846954893280062904476020316875586496329657820227024803050}{44299003962519079079914005076999886353799099687214893856399049013349597811714664749866604463791819941491} a^{5} - \frac{14938144954230381876723344443916284791086061620182231002967673204882242654486394939978959347636597825223}{88598007925038158159828010153999772707598199374429787712798098026699195623429329499733208927583639882982} a^{4} + \frac{13403690408465626501590043864960321844171503891249450993076578392235379762649852370990415303876696860513}{88598007925038158159828010153999772707598199374429787712798098026699195623429329499733208927583639882982} a^{3} - \frac{61500739478901286664591893551923611336339692064000606783378539339493809042724770361187866089819662308457}{177196015850076316319656020307999545415196398748859575425596196053398391246858658999466417855167279765964} a^{2} + \frac{38894519795968531187140819616780649173920134246089895880955672878594103749487292502090399028068540206281}{88598007925038158159828010153999772707598199374429787712798098026699195623429329499733208927583639882982} a + \frac{18068134916725871484319162611554176219942703584168534310491503725021298723051461640854645764852510717630}{44299003962519079079914005076999886353799099687214893856399049013349597811714664749866604463791819941491}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3588516858830000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 27648 |
| The 96 conjugacy class representatives for t18n662 are not computed |
| Character table for t18n662 is not computed |
Intermediate fields
| 3.3.32009.4, 9.9.32795655776729.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.