Normalized defining polynomial
\( x^{18} - 6 x^{17} - 39 x^{16} + 186 x^{15} + 516 x^{14} - 2286 x^{13} - 2829 x^{12} + 14238 x^{11} + 4938 x^{10} - 47130 x^{9} + 10971 x^{8} + 77838 x^{7} - 51087 x^{6} - 48144 x^{5} + 54420 x^{4} - 5076 x^{3} - 9012 x^{2} + 2568 x - 100 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(287700265443621620596836604575744=2^{33}\cdot 3^{24}\cdot 17^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $63.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{10} a^{15} + \frac{3}{10} a^{13} - \frac{1}{5} a^{12} - \frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{10} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{10} a^{5} - \frac{2}{5} a^{4} + \frac{1}{10} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{10} a^{16} - \frac{1}{10} a^{14} - \frac{2}{5} a^{13} - \frac{1}{5} a^{11} - \frac{1}{10} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{10} a^{6} + \frac{2}{5} a^{5} - \frac{1}{10} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{101972559057102021588980} a^{17} + \frac{474712814216595795983}{25493139764275505397245} a^{16} + \frac{2384532871065996051847}{101972559057102021588980} a^{15} - \frac{507699098694212616149}{50986279528551010794490} a^{14} - \frac{711120030076755202461}{10197255905710202158898} a^{13} - \frac{2828199720069018401998}{25493139764275505397245} a^{12} - \frac{1998270225071552082289}{101972559057102021588980} a^{11} - \frac{7353877100597123875738}{25493139764275505397245} a^{10} - \frac{8364736528841231650782}{25493139764275505397245} a^{9} + \frac{12062594028760148385827}{25493139764275505397245} a^{8} + \frac{14803810208682777812083}{101972559057102021588980} a^{7} - \frac{6356435249955572538898}{25493139764275505397245} a^{6} + \frac{25807069484350851465443}{101972559057102021588980} a^{5} - \frac{7416018056476645099444}{25493139764275505397245} a^{4} - \frac{1424328743585817190957}{50986279528551010794490} a^{3} - \frac{268121649160284889053}{614292524440373624030} a^{2} - \frac{2572328934017770089352}{25493139764275505397245} a - \frac{1032317548442566962625}{5098627952855101079449}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 105925015490 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_3\wr C_2$ (as 18T36):
| A solvable group of order 72 |
| The 9 conjugacy class representatives for $S_3\wr C_2$ |
| Character table for $S_3\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{34}) \), 9.9.21389063233536.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | 6.6.114610464.1, 6.6.25380864.1 |
| Degree 9 sibling: | 9.9.21389063233536.1 |
| Degree 12 siblings: | Deg 12, Deg 12, 12.12.13450811861294383104.1, Deg 12, Deg 12, Deg 12 |
| Degree 18 siblings: | Deg 18, Deg 18 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.1 | $x^{6} + 14$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.12.22.60 | $x^{12} - 84 x^{10} + 444 x^{8} + 32 x^{6} - 272 x^{4} - 320 x^{2} + 64$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ | |
| $3$ | 3.9.12.21 | $x^{9} + 3 x^{4} + 6$ | $9$ | $1$ | $12$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ |
| 3.9.12.21 | $x^{9} + 3 x^{4} + 6$ | $9$ | $1$ | $12$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
| $17$ | 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |