Normalized defining polynomial
\( x^{18} - x^{17} - 49 x^{16} + 50 x^{15} + 825 x^{14} - 811 x^{13} - 6474 x^{12} + 5979 x^{11} + 25635 x^{10} - 21240 x^{9} - 51109 x^{8} + 33299 x^{7} + 50891 x^{6} - 18700 x^{5} - 24960 x^{4} + 720 x^{3} + 4900 x^{2} + 1300 x + 100 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2820436287545773260125000000000000=2^{12}\cdot 5^{15}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3}$, $\frac{1}{10} a^{12} - \frac{1}{10} a^{9} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{10} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{3}{10} a^{3}$, $\frac{1}{20} a^{13} - \frac{1}{20} a^{12} - \frac{1}{10} a^{11} + \frac{1}{20} a^{10} - \frac{1}{20} a^{9} + \frac{3}{10} a^{8} + \frac{7}{20} a^{7} + \frac{1}{4} a^{6} + \frac{1}{10} a^{5} + \frac{3}{20} a^{4} + \frac{9}{20} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{20} a^{14} - \frac{1}{20} a^{12} - \frac{1}{20} a^{11} - \frac{1}{20} a^{9} + \frac{9}{20} a^{8} - \frac{3}{20} a^{6} - \frac{7}{20} a^{5} + \frac{2}{5} a^{4} + \frac{9}{20} a^{3} - \frac{1}{2}$, $\frac{1}{20} a^{15} - \frac{1}{10} a^{11} - \frac{1}{10} a^{9} - \frac{3}{10} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{3}{10} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{5020} a^{16} - \frac{11}{1004} a^{15} - \frac{3}{5020} a^{14} - \frac{11}{502} a^{13} - \frac{5}{1004} a^{12} + \frac{397}{5020} a^{11} + \frac{2}{1255} a^{10} - \frac{179}{5020} a^{9} + \frac{363}{5020} a^{8} - \frac{37}{502} a^{7} + \frac{1317}{5020} a^{6} + \frac{403}{5020} a^{5} - \frac{1559}{5020} a^{4} + \frac{514}{1255} a^{3} - \frac{59}{502} a^{2} - \frac{185}{502} a - \frac{117}{251}$, $\frac{1}{491867943206832860} a^{17} + \frac{41575269654099}{491867943206832860} a^{16} - \frac{825917478667591}{491867943206832860} a^{15} + \frac{980901281201621}{245933971603416430} a^{14} + \frac{11849215051126211}{491867943206832860} a^{13} - \frac{6788640623508079}{491867943206832860} a^{12} + \frac{2053833228353590}{24593397160341643} a^{11} + \frac{47282015680376557}{491867943206832860} a^{10} + \frac{2316400868656771}{98373588641366572} a^{9} - \frac{74446422028063057}{245933971603416430} a^{8} + \frac{42887817451234133}{98373588641366572} a^{7} + \frac{116042931372009859}{491867943206832860} a^{6} + \frac{12859874528121401}{98373588641366572} a^{5} + \frac{49057580086389781}{245933971603416430} a^{4} - \frac{51281900572218033}{245933971603416430} a^{3} + \frac{5070372850962577}{49186794320683286} a^{2} + \frac{9495416557958779}{24593397160341643} a - \frac{11490259391034042}{24593397160341643}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 102348683533 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_3:S_3.C_2$ (as 18T27):
| A solvable group of order 72 |
| The 12 conjugacy class representatives for $C_2\times C_3:S_3.C_2$ |
| Character table for $C_2\times C_3:S_3.C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 9.9.4750104241000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |