Normalized defining polynomial
\( x^{18} - 52 x^{16} + 1009 x^{14} - 9848 x^{12} + 53555 x^{10} - 168338 x^{8} + 306779 x^{6} - 310144 x^{4} + 151404 x^{2} - 22898 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(263783607028943356478904541770678272=2^{43}\cdot 37^{6}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7}$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{12} - \frac{3}{10} a^{10} - \frac{1}{2} a^{8} - \frac{1}{5} a^{6} - \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{10} a^{15} - \frac{1}{10} a^{13} - \frac{3}{10} a^{11} - \frac{1}{2} a^{9} - \frac{1}{5} a^{7} - \frac{2}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{2929769630} a^{16} + \frac{27290997}{2929769630} a^{14} - \frac{532389441}{2929769630} a^{12} + \frac{1333555081}{2929769630} a^{10} - \frac{219607456}{1464884815} a^{8} + \frac{558299547}{1464884815} a^{6} - \frac{591622662}{1464884815} a^{4} - \frac{29143575}{292976963} a^{2} + \frac{40980373}{1464884815}$, $\frac{1}{626970700820} a^{17} - \frac{1}{5859539260} a^{16} + \frac{24637355889}{626970700820} a^{15} - \frac{27290997}{5859539260} a^{14} + \frac{40897068581}{313485350410} a^{13} - \frac{466247687}{2929769630} a^{12} - \frac{2672656850}{31348535041} a^{11} - \frac{699609974}{1464884815} a^{10} + \frac{74269910653}{626970700820} a^{9} + \frac{1904099727}{5859539260} a^{8} - \frac{10499637027}{125394140164} a^{7} - \frac{2581483909}{5859539260} a^{6} - \frac{72370978597}{313485350410} a^{5} - \frac{873262153}{2929769630} a^{4} + \frac{41457010871}{313485350410} a^{3} + \frac{29143575}{585953926} a^{2} - \frac{3273145911}{62697070082} a - \frac{40980373}{2929769630}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3932994072660 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6912 |
| The 30 conjugacy class representatives for t18n518 |
| Character table for t18n518 is not computed |
Intermediate fields
| 3.3.148.1, 9.9.1418629341618176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.9 | $x^{6} + 6 x^{4} + 2$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.12.32.186 | $x^{12} - 4 x^{11} - 4 x^{10} + 4 x^{9} - 6 x^{8} + 8 x^{6} + 8 x^{5} + 8 x^{4} + 8 x + 2$ | $12$ | $1$ | $32$ | 12T28 | $[2, 3, 7/2]_{3}^{2}$ | |
| 37 | Data not computed | ||||||
| $43$ | 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.6.4.1 | $x^{6} + 344 x^{3} + 49923$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 43.6.4.1 | $x^{6} + 344 x^{3} + 49923$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |