Normalized defining polynomial
\( x^{18} - 3 x^{17} - 31 x^{16} + 89 x^{15} + 346 x^{14} - 876 x^{13} - 2020 x^{12} + 3762 x^{11} + 7196 x^{10} - 7031 x^{9} - 15065 x^{8} + 2957 x^{7} + 14804 x^{6} + 4714 x^{5} - 3305 x^{4} - 1621 x^{3} + 195 x^{2} + 128 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2637116370088050448669881277=13^{15}\cdot 61^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{372} a^{16} - \frac{19}{93} a^{15} + \frac{20}{93} a^{14} + \frac{121}{372} a^{13} - \frac{23}{372} a^{12} - \frac{61}{186} a^{11} - \frac{41}{124} a^{10} + \frac{131}{372} a^{9} + \frac{11}{31} a^{8} - \frac{83}{186} a^{7} - \frac{67}{372} a^{6} + \frac{53}{186} a^{5} + \frac{89}{372} a^{4} - \frac{17}{372} a^{3} - \frac{125}{372} a^{2} - \frac{45}{124} a - \frac{13}{372}$, $\frac{1}{873555687700308} a^{17} - \frac{702787312703}{873555687700308} a^{16} - \frac{10117477591795}{145592614616718} a^{15} + \frac{43287548519243}{873555687700308} a^{14} - \frac{37306695925577}{145592614616718} a^{13} + \frac{970845307405}{291185229233436} a^{12} - \frac{103433377361167}{873555687700308} a^{11} + \frac{140526805337023}{436777843850154} a^{10} + \frac{201993911833657}{873555687700308} a^{9} - \frac{36720525146332}{218388921925077} a^{8} + \frac{11280723663145}{291185229233436} a^{7} + \frac{178245896159321}{873555687700308} a^{6} + \frac{125444837994811}{873555687700308} a^{5} + \frac{114193068019567}{436777843850154} a^{4} + \frac{21974979155381}{145592614616718} a^{3} - \frac{1313508740611}{218388921925077} a^{2} - \frac{109710709524887}{436777843850154} a - \frac{63432840032513}{873555687700308}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 66833881.58911677 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.10309.1, 3.3.169.1, 6.6.1381581253.1, \(\Q(\zeta_{13})^+\), 9.9.1095593933629.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $61$ | 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 61.6.3.1 | $x^{6} - 122 x^{4} + 3721 x^{2} - 22698100$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |