Normalized defining polynomial
\( x^{18} - 330 x^{16} - 81 x^{15} + 45297 x^{14} + 22275 x^{13} - 3364945 x^{12} - 2446038 x^{11} + 147620790 x^{10} + 137117016 x^{9} - 3919403250 x^{8} - 4161161889 x^{7} + 62053293665 x^{6} + 66658437837 x^{5} - 557763528321 x^{4} - 503928923265 x^{3} + 2608398188694 x^{2} + 1392643459206 x - 4915047269169 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2592007628906098423575962344926683939329163660704124500533=3^{6}\cdot 7\cdot 257^{6}\cdot 2917^{3}\cdot 4141276487^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1547.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 257, 2917, 4141276487$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{9} - \frac{1}{9} a^{7} - \frac{1}{9} a^{5} + \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{10} - \frac{1}{9} a^{8} - \frac{1}{9} a^{6} + \frac{4}{9} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{9} - \frac{1}{9} a^{5} - \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{10} - \frac{1}{9} a^{6} - \frac{1}{9} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{9} - \frac{1}{9} a^{3} + \frac{1}{3} a$, $\frac{1}{27} a^{16} - \frac{4}{27} a^{10} - \frac{1}{9} a^{8} - \frac{1}{9} a^{6} - \frac{10}{27} a^{4} - \frac{1}{9} a^{2} - \frac{1}{3}$, $\frac{1}{540360664097549242747485565125217600047740612966239662607233693513} a^{17} - \frac{4745816139200833626121069964065949709388965149452656612509056031}{540360664097549242747485565125217600047740612966239662607233693513} a^{16} - \frac{3096240490691426770861814377864971383095517352057989984651443991}{180120221365849747582495188375072533349246870988746554202411231171} a^{15} - \frac{7271013174812159517941211649164097772094783397029116463945432743}{180120221365849747582495188375072533349246870988746554202411231171} a^{14} + \frac{3094870138321608169549278432532765684545817841295957779066346194}{60040073788616582527498396125024177783082290329582184734137077057} a^{13} + \frac{2998282486952885784443502201241865944720056747114703486722304708}{60040073788616582527498396125024177783082290329582184734137077057} a^{12} - \frac{11354722486629167481713656108997214629752716254376858904686537649}{540360664097549242747485565125217600047740612966239662607233693513} a^{11} + \frac{72955753462536504613761022126422253302294627351234688934730553559}{540360664097549242747485565125217600047740612966239662607233693513} a^{10} + \frac{28661068801755180148251090584586394031818666927597261937970034784}{180120221365849747582495188375072533349246870988746554202411231171} a^{9} + \frac{14443696856776467294082770524511444162909937548642545319478438448}{180120221365849747582495188375072533349246870988746554202411231171} a^{8} + \frac{4072257261869097929101806759270108840758506283551180859620370065}{180120221365849747582495188375072533349246870988746554202411231171} a^{7} + \frac{23388816693623665081467864684917564887912181085446635025807460061}{180120221365849747582495188375072533349246870988746554202411231171} a^{6} - \frac{44646301461403022690564533208799328346463825791274830961324719020}{540360664097549242747485565125217600047740612966239662607233693513} a^{5} + \frac{246331847930684343441179098563593233340582967076773268102500707396}{540360664097549242747485565125217600047740612966239662607233693513} a^{4} + \frac{14766772158740077545736845600627963643420774621726537967485152371}{180120221365849747582495188375072533349246870988746554202411231171} a^{3} - \frac{46518756114887271239989816302788326065702002971839550171978832911}{180120221365849747582495188375072533349246870988746554202411231171} a^{2} - \frac{167435470418844290067245737354396820313028929186336671678702050}{60040073788616582527498396125024177783082290329582184734137077057} a - \frac{25173231532065276407216231601960038317545913029003565127506855447}{60040073788616582527498396125024177783082290329582184734137077057}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 175536288776000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2239488 |
| The 255 conjugacy class representatives for t18n945 are not computed |
| Character table for t18n945 is not computed |
Intermediate fields
| 3.3.257.1, 6.6.2393636270706991113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }{,}\,{\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.6.6.7 | $x^{6} + 3 x + 6$ | $6$ | $1$ | $6$ | $C_3^2:D_4$ | $[5/4, 5/4]_{4}^{2}$ | |
| 3.8.0.1 | $x^{8} - x^{3} + 2$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.12.0.1 | $x^{12} + 3 x^{2} - 2 x + 3$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 257 | Data not computed | ||||||
| 2917 | Data not computed | ||||||
| 4141276487 | Data not computed | ||||||