Normalized defining polynomial
\( x^{18} - 6 x^{17} - 190 x^{16} + 1044 x^{15} + 14860 x^{14} - 72108 x^{13} - 621949 x^{12} + 2539072 x^{11} + 15046066 x^{10} - 48293558 x^{9} - 211154628 x^{8} + 478686318 x^{7} + 1635451266 x^{6} - 2126342036 x^{5} - 6161937706 x^{4} + 2788171094 x^{3} + 7204566626 x^{2} - 907486600 x - 219172337 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(244109409460733537552375387021430784=2^{12}\cdot 7^{12}\cdot 53^{6}\cdot 181^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 53, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8713328056665566249578019621500805896710085796582254300606222140521512538066} a^{17} + \frac{1711320877670305974267384708167585607007108781386330514012103364234938164645}{8713328056665566249578019621500805896710085796582254300606222140521512538066} a^{16} - \frac{1060244387016464103326590265677302093000964987177429138183030188543916260640}{4356664028332783124789009810750402948355042898291127150303111070260756269033} a^{15} - \frac{1616174412810228745747892369189971942667694476476865795619435436487422890276}{4356664028332783124789009810750402948355042898291127150303111070260756269033} a^{14} + \frac{986620066279262835946626856297592394973241734066887164553606696613538057985}{8713328056665566249578019621500805896710085796582254300606222140521512538066} a^{13} + \frac{1644066996228334990113412375358106639096529403087190681172914262339593898508}{4356664028332783124789009810750402948355042898291127150303111070260756269033} a^{12} + \frac{840277197685466683385338245851802546716095324317154390359119485169489341054}{4356664028332783124789009810750402948355042898291127150303111070260756269033} a^{11} - \frac{340781555909089431239659510816108626159633315241269486069670921694947703838}{4356664028332783124789009810750402948355042898291127150303111070260756269033} a^{10} + \frac{4130117826088279839321882916374096426221580285889470985986585355244719639635}{8713328056665566249578019621500805896710085796582254300606222140521512538066} a^{9} + \frac{2019648886361656124269130447374820322715415730795849608157782516571947481382}{4356664028332783124789009810750402948355042898291127150303111070260756269033} a^{8} + \frac{2389336373211159172248667327330717972161453598118004296751440723578795317501}{8713328056665566249578019621500805896710085796582254300606222140521512538066} a^{7} + \frac{1558794329872120601501880480875154261634736297269235638413091228561007261693}{8713328056665566249578019621500805896710085796582254300606222140521512538066} a^{6} - \frac{975332897865765560334860547128651803846084365686652606263975071582140682379}{8713328056665566249578019621500805896710085796582254300606222140521512538066} a^{5} - \frac{1863449089567291317136693426732364093740787721948714347852864957101151689}{6904380393554331418049143915610781217678356415675320364981158589953654943} a^{4} + \frac{1117870216613191518952769215658281878248322309542596416138588704805926154266}{4356664028332783124789009810750402948355042898291127150303111070260756269033} a^{3} - \frac{2047543571639453084118153692603257035062916796793211132163736421690990301025}{8713328056665566249578019621500805896710085796582254300606222140521512538066} a^{2} - \frac{2017055055623110000089357373730151632045011498791391164500483559206499421053}{4356664028332783124789009810750402948355042898291127150303111070260756269033} a + \frac{1800321218385221739848813469045253309585355034821172010399437216301156506437}{8713328056665566249578019621500805896710085796582254300606222140521512538066}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 676604288950 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 40 conjugacy class representatives for t18n176 |
| Character table for t18n176 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 3.3.2597.1, 9.9.17515230173.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.12.12.25 | $x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$ | $2$ | $6$ | $12$ | $C_{12}$ | $[2]^{6}$ | |
| 7 | Data not computed | ||||||
| $53$ | 53.6.0.1 | $x^{6} - x + 8$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 53.12.6.1 | $x^{12} + 2382032 x^{6} - 418195493 x^{2} + 1418519112256$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 181 | Data not computed | ||||||