Normalized defining polynomial
\( x^{18} - 6 x^{17} - 55 x^{16} + 288 x^{15} + 1240 x^{14} - 4936 x^{13} - 14667 x^{12} + 37148 x^{11} + 96154 x^{10} - 116460 x^{9} - 323261 x^{8} + 80582 x^{7} + 444457 x^{6} + 127504 x^{5} - 172672 x^{4} - 113814 x^{3} - 20448 x^{2} - 532 x + 74 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2314534481658338125487024826744832=2^{24}\cdot 37^{9}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{37} a^{14} + \frac{5}{37} a^{13} - \frac{13}{37} a^{12} - \frac{1}{37} a^{11} + \frac{15}{37} a^{10} - \frac{11}{37} a^{9} - \frac{5}{37} a^{8} - \frac{1}{37} a^{7} - \frac{7}{37} a^{6} + \frac{15}{37} a^{5} + \frac{18}{37} a^{4} - \frac{10}{37} a^{3} + \frac{9}{37} a^{2} + \frac{13}{37} a$, $\frac{1}{37} a^{15} - \frac{1}{37} a^{13} - \frac{10}{37} a^{12} - \frac{17}{37} a^{11} - \frac{12}{37} a^{10} + \frac{13}{37} a^{9} - \frac{13}{37} a^{8} - \frac{2}{37} a^{7} + \frac{13}{37} a^{6} + \frac{17}{37} a^{5} + \frac{11}{37} a^{4} - \frac{15}{37} a^{3} + \frac{5}{37} a^{2} + \frac{9}{37} a$, $\frac{1}{9953} a^{16} - \frac{70}{9953} a^{15} - \frac{129}{9953} a^{14} - \frac{1394}{9953} a^{13} - \frac{2648}{9953} a^{12} + \frac{4895}{9953} a^{11} - \frac{1659}{9953} a^{10} - \frac{4695}{9953} a^{9} - \frac{4224}{9953} a^{8} + \frac{4684}{9953} a^{7} + \frac{3370}{9953} a^{6} - \frac{3062}{9953} a^{5} - \frac{3015}{9953} a^{4} + \frac{818}{9953} a^{3} - \frac{2011}{9953} a^{2} + \frac{110}{269} a + \frac{99}{269}$, $\frac{1}{3049499051103214782770723620342987} a^{17} - \frac{8646748659876014045373608849}{3049499051103214782770723620342987} a^{16} - \frac{37470623810055310971840740586495}{3049499051103214782770723620342987} a^{15} + \frac{37158600025489444433664150797180}{3049499051103214782770723620342987} a^{14} - \frac{706609676312779362560022235988563}{3049499051103214782770723620342987} a^{13} + \frac{7459897483564404672785978002822}{3049499051103214782770723620342987} a^{12} - \frac{928508787218306457222199935259784}{3049499051103214782770723620342987} a^{11} - \frac{662425625349251791536184112857348}{3049499051103214782770723620342987} a^{10} - \frac{356583373319454621513461979996991}{3049499051103214782770723620342987} a^{9} + \frac{188820122523846042994954850714134}{3049499051103214782770723620342987} a^{8} - \frac{800804740092004493749092087126143}{3049499051103214782770723620342987} a^{7} - \frac{890535516172423760989268269652000}{3049499051103214782770723620342987} a^{6} - \frac{570733612542361171304394216862328}{3049499051103214782770723620342987} a^{5} - \frac{1357305564798097557912807775647592}{3049499051103214782770723620342987} a^{4} + \frac{376383997173212349383553025706591}{3049499051103214782770723620342987} a^{3} - \frac{179317901536585194249920130995179}{3049499051103214782770723620342987} a^{2} + \frac{226491924082436876342613728353491}{3049499051103214782770723620342987} a - \frac{38349524327319115881734098085595}{82418893273059858993803341090351}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 182397827491 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 16 conjugacy class representatives for t18n185 |
| Character table for t18n185 |
Intermediate fields
| 3.3.148.1, 3.3.404.1, 9.9.3340021539392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.4 | $x^{6} + 2 x^{3} + 2 x^{2} + 2$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ |
| 2.12.16.5 | $x^{12} - 12 x^{10} + 69 x^{8} - 104 x^{6} + 35 x^{4} + 52 x^{2} + 23$ | $6$ | $2$ | $16$ | 12T50 | $[4/3, 4/3, 2, 2]_{3}^{2}$ | |
| 37 | Data not computed | ||||||
| $101$ | 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 101.3.0.1 | $x^{3} - x + 11$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 101.6.3.1 | $x^{6} - 202 x^{4} + 10201 x^{2} - 124666421$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 101.6.3.1 | $x^{6} - 202 x^{4} + 10201 x^{2} - 124666421$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |