Normalized defining polynomial
\( x^{18} - 8 x^{17} - 69 x^{16} + 742 x^{15} + 463 x^{14} - 21374 x^{13} + 45054 x^{12} + 180264 x^{11} - 794484 x^{10} + 245930 x^{9} + 3537283 x^{8} - 6602254 x^{7} + 1171173 x^{6} + 8772146 x^{5} - 10063201 x^{4} + 2750688 x^{3} + 2007202 x^{2} - 1514508 x + 284953 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(225106712174089155532536320000000000=2^{18}\cdot 5^{10}\cdot 17^{11}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $92.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{117731799579235795209320833044197623540703311} a^{17} - \frac{15130707714639101679606099954757239602746020}{117731799579235795209320833044197623540703311} a^{16} + \frac{53573914533562660060189909930579380192597175}{117731799579235795209320833044197623540703311} a^{15} + \frac{57700989851939008082298274477545868845442397}{117731799579235795209320833044197623540703311} a^{14} - \frac{31952913241914310233875373960628006693285346}{117731799579235795209320833044197623540703311} a^{13} + \frac{48409990628673895090058617945392445117537952}{117731799579235795209320833044197623540703311} a^{12} + \frac{49703179362811733969100879310375463211502864}{117731799579235795209320833044197623540703311} a^{11} - \frac{5202547233768617313345662448821437381046791}{117731799579235795209320833044197623540703311} a^{10} + \frac{31147145927199173604386322385336547240040362}{117731799579235795209320833044197623540703311} a^{9} + \frac{56754063636842848180404281072141609591396121}{117731799579235795209320833044197623540703311} a^{8} - \frac{40558361942818247934428422037889543564236593}{117731799579235795209320833044197623540703311} a^{7} - \frac{30223594209787004162567713632323415478827920}{117731799579235795209320833044197623540703311} a^{6} + \frac{37460827274100855347251751846026280839770375}{117731799579235795209320833044197623540703311} a^{5} + \frac{29613468848865709088750534151582610463208076}{117731799579235795209320833044197623540703311} a^{4} + \frac{2925904815722892031011826031422698246378735}{117731799579235795209320833044197623540703311} a^{3} - \frac{1898495674463631273544872435040593119892439}{117731799579235795209320833044197623540703311} a^{2} + \frac{5725528084667965864322014298485841664182279}{117731799579235795209320833044197623540703311} a + \frac{31073277626389867753580175664569513848015885}{117731799579235795209320833044197623540703311}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 882349040481 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times (C_3\times A_4):S_3$ (as 18T156):
| A solvable group of order 432 |
| The 38 conjugacy class representatives for $C_2\times (C_3\times A_4):S_3$ |
| Character table for $C_2\times (C_3\times A_4):S_3$ is not computed |
Intermediate fields
| 3.3.148.1, 6.6.37236800.1, 9.9.169223568520000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 5.12.10.2 | $x^{12} + 15 x^{6} + 100$ | $6$ | $2$ | $10$ | $C_6\times S_3$ | $[\ ]_{6}^{6}$ | |
| $17$ | 17.6.3.2 | $x^{6} - 289 x^{2} + 14739$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.12.8.2 | $x^{12} - 4913 x^{3} + 918731$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ | |
| $37$ | 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.0.1 | $x^{6} - x + 20$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |