Normalized defining polynomial
\( x^{18} - x^{17} - 37 x^{16} + 37 x^{15} + 571 x^{14} - 571 x^{13} - 4749 x^{12} + 4749 x^{11} + 22915 x^{10} - 22915 x^{9} - 64029 x^{8} + 64029 x^{7} + 96483 x^{6} - 96483 x^{5} - 64029 x^{4} + 64029 x^{3} + 8931 x^{2} - 8931 x - 797 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(221153377467012797984123331973=7^{9}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(133=7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{133}(64,·)$, $\chi_{133}(1,·)$, $\chi_{133}(132,·)$, $\chi_{133}(69,·)$, $\chi_{133}(13,·)$, $\chi_{133}(85,·)$, $\chi_{133}(90,·)$, $\chi_{133}(27,·)$, $\chi_{133}(92,·)$, $\chi_{133}(97,·)$, $\chi_{133}(34,·)$, $\chi_{133}(99,·)$, $\chi_{133}(36,·)$, $\chi_{133}(41,·)$, $\chi_{133}(106,·)$, $\chi_{133}(43,·)$, $\chi_{133}(48,·)$, $\chi_{133}(120,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{457} a^{10} + \frac{80}{457} a^{9} - \frac{20}{457} a^{8} - \frac{69}{457} a^{7} + \frac{140}{457} a^{6} - \frac{43}{457} a^{5} + \frac{57}{457} a^{4} - \frac{6}{457} a^{3} - \frac{57}{457} a^{2} + \frac{95}{457} a - \frac{64}{457}$, $\frac{1}{457} a^{11} - \frac{22}{457} a^{9} + \frac{160}{457} a^{8} + \frac{176}{457} a^{7} + \frac{182}{457} a^{6} - \frac{159}{457} a^{5} + \frac{4}{457} a^{4} - \frac{34}{457} a^{3} + \frac{85}{457} a^{2} + \frac{105}{457} a + \frac{93}{457}$, $\frac{1}{457} a^{12} + \frac{92}{457} a^{9} + \frac{193}{457} a^{8} + \frac{35}{457} a^{7} + \frac{179}{457} a^{6} - \frac{28}{457} a^{5} - \frac{151}{457} a^{4} - \frac{47}{457} a^{3} + \frac{222}{457} a^{2} - \frac{102}{457} a - \frac{37}{457}$, $\frac{1}{457} a^{13} + \frac{145}{457} a^{9} + \frac{47}{457} a^{8} + \frac{129}{457} a^{7} - \frac{112}{457} a^{6} + \frac{149}{457} a^{5} + \frac{193}{457} a^{4} - \frac{140}{457} a^{3} + \frac{115}{457} a^{2} - \frac{94}{457} a - \frac{53}{457}$, $\frac{1}{457} a^{14} - \frac{128}{457} a^{9} - \frac{170}{457} a^{8} - \frac{161}{457} a^{7} - \frac{43}{457} a^{6} + \frac{30}{457} a^{5} - \frac{179}{457} a^{4} + \frac{71}{457} a^{3} - \frac{55}{457} a^{2} - \frac{118}{457} a + \frac{140}{457}$, $\frac{1}{457} a^{15} + \frac{16}{457} a^{9} + \frac{21}{457} a^{8} - \frac{192}{457} a^{7} + \frac{127}{457} a^{6} - \frac{199}{457} a^{5} + \frac{55}{457} a^{4} + \frac{91}{457} a^{3} - \frac{102}{457} a^{2} - \frac{39}{457} a + \frac{34}{457}$, $\frac{1}{457} a^{16} + \frac{112}{457} a^{9} + \frac{128}{457} a^{8} - \frac{140}{457} a^{7} - \frac{154}{457} a^{6} - \frac{171}{457} a^{5} + \frac{93}{457} a^{4} - \frac{6}{457} a^{3} - \frac{41}{457} a^{2} - \frac{115}{457} a + \frac{110}{457}$, $\frac{1}{457} a^{17} - \frac{149}{457} a^{9} - \frac{185}{457} a^{8} - \frac{195}{457} a^{7} + \frac{144}{457} a^{6} - \frac{118}{457} a^{5} + \frac{8}{457} a^{4} + \frac{174}{457} a^{3} - \frac{129}{457} a^{2} - \frac{19}{457} a - \frac{144}{457}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 428418281.929 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{133}) \), 3.3.361.1, 6.6.849301957.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 19 | Data not computed | ||||||