Normalized defining polynomial
\( x^{18} - x^{17} - 75 x^{16} + 75 x^{15} + 2357 x^{14} - 2357 x^{13} - 40203 x^{12} + 40203 x^{11} + 402421 x^{10} - 402421 x^{9} - 2379787 x^{8} + 2379787 x^{7} + 7892981 x^{6} - 7892981 x^{5} - 12652555 x^{4} + 12652555 x^{3} + 6025205 x^{2} - 6025205 x + 1044469 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(210684481487848166847338548828125=3^{9}\cdot 5^{9}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(285=3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{285}(256,·)$, $\chi_{285}(1,·)$, $\chi_{285}(196,·)$, $\chi_{285}(269,·)$, $\chi_{285}(14,·)$, $\chi_{285}(271,·)$, $\chi_{285}(16,·)$, $\chi_{285}(89,·)$, $\chi_{285}(284,·)$, $\chi_{285}(29,·)$, $\chi_{285}(224,·)$, $\chi_{285}(226,·)$, $\chi_{285}(164,·)$, $\chi_{285}(106,·)$, $\chi_{285}(179,·)$, $\chi_{285}(121,·)$, $\chi_{285}(59,·)$, $\chi_{285}(61,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{23939} a^{10} - \frac{5178}{23939} a^{9} - \frac{40}{23939} a^{8} - \frac{5104}{23939} a^{7} + \frac{560}{23939} a^{6} - \frac{10569}{23939} a^{5} - \frac{3200}{23939} a^{4} + \frac{7075}{23939} a^{3} + \frac{6400}{23939} a^{2} - \frac{8490}{23939} a - \frac{2048}{23939}$, $\frac{1}{23939} a^{11} - \frac{44}{23939} a^{9} + \frac{3227}{23939} a^{8} + \frac{704}{23939} a^{7} - \frac{7508}{23939} a^{6} - \frac{4928}{23939} a^{5} + \frac{3263}{23939} a^{4} - \frac{9859}{23939} a^{3} - \frac{866}{23939} a^{2} - \frac{11264}{23939} a + \frac{433}{23939}$, $\frac{1}{23939} a^{12} - \frac{9154}{23939} a^{9} - \frac{1056}{23939} a^{8} + \frac{7306}{23939} a^{7} - \frac{4227}{23939} a^{6} - \frac{6932}{23939} a^{5} - \frac{7025}{23939} a^{4} - \frac{773}{23939} a^{3} + \frac{7007}{23939} a^{2} + \frac{9897}{23939} a + \frac{5644}{23939}$, $\frac{1}{23939} a^{13} - \frac{1248}{23939} a^{9} + \frac{231}{23939} a^{8} + \frac{2685}{23939} a^{7} - \frac{3638}{23939} a^{6} + \frac{5787}{23939} a^{5} + \frac{7763}{23939} a^{4} - \frac{7377}{23939} a^{3} - \frac{7175}{23939} a^{2} - \frac{5822}{23939} a - \frac{3155}{23939}$, $\frac{1}{23939} a^{14} + \frac{1617}{23939} a^{9} + \frac{643}{23939} a^{8} - \frac{5656}{23939} a^{7} + \frac{10436}{23939} a^{6} + \frac{8040}{23939} a^{5} - \frac{3164}{23939} a^{4} - \frac{11066}{23939} a^{3} + \frac{9691}{23939} a^{2} + \frac{6302}{23939} a + \frac{5569}{23939}$, $\frac{1}{23939} a^{15} - \frac{5181}{23939} a^{9} + \frac{11146}{23939} a^{8} + \frac{4649}{23939} a^{7} - \frac{11737}{23939} a^{6} - \frac{5537}{23939} a^{5} - \frac{7490}{23939} a^{4} - \frac{11681}{23939} a^{3} - \frac{850}{23939} a^{2} - \frac{7087}{23939} a + \frac{8034}{23939}$, $\frac{1}{23939} a^{16} - \frac{4392}{23939} a^{9} - \frac{11079}{23939} a^{8} - \frac{2966}{23939} a^{7} - \frac{796}{23939} a^{6} + \frac{6953}{23939} a^{5} - \frac{1154}{23939} a^{4} + \frac{4116}{23939} a^{3} - \frac{4202}{23939} a^{2} - \frac{2713}{23939} a - \frac{5711}{23939}$, $\frac{1}{23939} a^{17} - \frac{10805}{23939} a^{9} - \frac{11073}{23939} a^{8} - \frac{10660}{23939} a^{7} + \frac{756}{23939} a^{6} - \frac{2481}{23939} a^{5} + \frac{1909}{23939} a^{4} - \frac{3624}{23939} a^{3} + \frac{1701}{23939} a^{2} + \frac{3171}{23939} a + \frac{6248}{23939}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9738921681.01 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{285}) \), 3.3.361.1, 6.6.8356834125.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 19 | Data not computed | ||||||