Normalized defining polynomial
\( x^{18} - 2826 x^{16} - 1884 x^{15} + 3191535 x^{14} + 4255380 x^{13} - 1889868432 x^{12} - 3677605848 x^{11} + 640037186847 x^{10} + 1566545909384 x^{9} - 126008992005570 x^{8} - 348984105127020 x^{7} + 13983683787376737 x^{6} + 39378422425826340 x^{5} - 809958483143306820 x^{4} - 1982681218316985312 x^{3} + 21225806692214506992 x^{2} + 29997087058481564736 x - 203877935399756689856 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(206965120322023780883776584258126018307696157475694936129536=2^{16}\cdot 3^{24}\cdot 37^{9}\cdot 179^{4}\cdot 1433\cdot 15551^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1973.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37, 179, 1433, 15551$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{6} a^{3} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{6} a^{4} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{12} a^{5} - \frac{1}{12} a^{4} - \frac{1}{12} a^{3} + \frac{1}{12} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{72} a^{6} - \frac{1}{12} a^{4} - \frac{1}{18} a^{3} - \frac{3}{8} a^{2} - \frac{1}{3} a + \frac{1}{18}$, $\frac{1}{72} a^{7} + \frac{1}{36} a^{4} + \frac{1}{24} a^{3} + \frac{1}{4} a^{2} - \frac{1}{9} a - \frac{1}{3}$, $\frac{1}{144} a^{8} - \frac{1}{144} a^{7} + \frac{1}{72} a^{5} - \frac{11}{144} a^{4} + \frac{1}{48} a^{3} - \frac{31}{72} a^{2} + \frac{11}{36} a - \frac{1}{6}$, $\frac{1}{864} a^{9} + \frac{1}{288} a^{7} - \frac{1}{144} a^{6} + \frac{1}{32} a^{5} + \frac{5}{72} a^{4} + \frac{7}{288} a^{3} - \frac{5}{16} a^{2} - \frac{11}{72} a - \frac{37}{108}$, $\frac{1}{1728} a^{10} - \frac{1}{1728} a^{9} + \frac{1}{576} a^{8} - \frac{1}{192} a^{7} + \frac{1}{192} a^{6} + \frac{11}{576} a^{5} - \frac{13}{576} a^{4} - \frac{17}{576} a^{3} - \frac{85}{288} a^{2} + \frac{67}{432} a - \frac{11}{216}$, $\frac{1}{1728} a^{11} - \frac{1}{288} a^{8} - \frac{1}{288} a^{7} + \frac{1}{288} a^{6} - \frac{5}{144} a^{5} + \frac{13}{288} a^{4} - \frac{41}{576} a^{3} - \frac{67}{864} a^{2} + \frac{61}{144} a - \frac{11}{72}$, $\frac{1}{10368} a^{12} + \frac{1}{2592} a^{9} + \frac{1}{576} a^{8} - \frac{1}{288} a^{7} + \frac{1}{432} a^{6} + \frac{7}{288} a^{5} - \frac{35}{1152} a^{4} - \frac{179}{2592} a^{3} - \frac{1}{18} a^{2} - \frac{7}{72} a - \frac{41}{648}$, $\frac{1}{10368} a^{13} - \frac{1}{5184} a^{10} + \frac{1}{576} a^{8} - \frac{11}{1728} a^{7} + \frac{1}{192} a^{6} - \frac{17}{1152} a^{5} - \frac{61}{5184} a^{4} - \frac{5}{192} a^{3} - \frac{79}{288} a^{2} + \frac{509}{1296} a + \frac{1}{8}$, $\frac{1}{20736} a^{14} - \frac{1}{20736} a^{13} + \frac{1}{5184} a^{11} + \frac{1}{10368} a^{10} - \frac{1}{3456} a^{9} + \frac{1}{864} a^{8} + \frac{1}{1728} a^{7} - \frac{1}{768} a^{6} - \frac{689}{20736} a^{5} - \frac{43}{1296} a^{4} + \frac{7}{288} a^{3} + \frac{67}{1296} a^{2} + \frac{407}{1296} a - \frac{25}{54}$, $\frac{1}{346327985664} a^{15} + \frac{2782687}{115442661888} a^{13} + \frac{2782687}{173163992832} a^{12} + \frac{161213}{712609024} a^{11} - \frac{5212643}{28860665472} a^{10} + \frac{54388595}{173163992832} a^{9} + \frac{1747693}{534456768} a^{8} - \frac{140092159}{38480887296} a^{7} + \frac{144111157}{86581996416} a^{6} - \frac{10448659}{4275654144} a^{5} + \frac{3331513871}{57721330944} a^{4} + \frac{1671449419}{43290998208} a^{3} + \frac{9}{32} a^{2} + \frac{367}{2592} a - \frac{1135}{3888}$, $\frac{1}{346327985664} a^{16} + \frac{2782687}{115442661888} a^{14} + \frac{2782687}{173163992832} a^{13} + \frac{1923737}{57721330944} a^{12} - \frac{5212643}{28860665472} a^{11} - \frac{45822049}{173163992832} a^{10} - \frac{712655}{1803791592} a^{9} - \frac{73285063}{38480887296} a^{8} - \frac{306836741}{86581996416} a^{7} - \frac{205383091}{38480887296} a^{6} - \frac{376279957}{57721330944} a^{5} + \frac{168289759}{43290998208} a^{4} + \frac{185}{5184} a^{3} + \frac{17}{1296} a^{2} + \frac{173}{972} a + \frac{205}{648}$, $\frac{1}{4818371409166875333704009042820255582321459979120798812889121511104832183879720784874873931128369664} a^{17} - \frac{187254451313685076859532967069632588762311088764104989890458167387035546540852861065453}{2409185704583437666852004521410127791160729989560399406444560755552416091939860392437436965564184832} a^{16} + \frac{3836628386657889794192222764359893264080720942335922503762762267366195007360173714443521}{4818371409166875333704009042820255582321459979120798812889121511104832183879720784874873931128369664} a^{15} + \frac{11054612595229926162724711972435930447017242308359906623986591647067491876751474999749680558339}{1204592852291718833426002260705063895580364994780199703222280377776208045969930196218718482782092416} a^{14} + \frac{63970116000169547074455009582194200054960899265434355822803648779732558287067806317284556397987}{2409185704583437666852004521410127791160729989560399406444560755552416091939860392437436965564184832} a^{13} - \frac{10836755256794565341325955480302437143522791228690389235736524309993414852629964934931080767511}{1204592852291718833426002260705063895580364994780199703222280377776208045969930196218718482782092416} a^{12} + \frac{546873699337837565670139377781346045507764115145193694254032581271654666909102375634913450812259}{2409185704583437666852004521410127791160729989560399406444560755552416091939860392437436965564184832} a^{11} + \frac{75974602711318929828744870288775782173230744198295082565786647784447870421424364161847393027129}{1204592852291718833426002260705063895580364994780199703222280377776208045969930196218718482782092416} a^{10} + \frac{1551462866127404172053029286627647004996038624621656857003982282667435805158229761526451070098793}{4818371409166875333704009042820255582321459979120798812889121511104832183879720784874873931128369664} a^{9} + \frac{2240990463953792060902448153344578416177827978768351727655581737670934874219848732140834488727117}{2409185704583437666852004521410127791160729989560399406444560755552416091939860392437436965564184832} a^{8} + \frac{15840735373526538088315860083804481524250429095701745508919825528116998752171308728111235584187409}{4818371409166875333704009042820255582321459979120798812889121511104832183879720784874873931128369664} a^{7} + \frac{578551826917832710089662714755593395982960086382771044090570565430411318697576836186375565466503}{150574106536464854178250282588132986947545624347524962902785047222026005746241274527339810347761552} a^{6} + \frac{165121264821652213528561158450185952680087437892019410696146998184284790156101936808597623513757}{9410881658529053386140642661758311684221601521720310181424065451376625359140079657958738146735097} a^{5} + \frac{51412595634755024206793285414654302545724787571477767854609335168608050873999194570271399280837975}{1204592852291718833426002260705063895580364994780199703222280377776208045969930196218718482782092416} a^{4} + \frac{48018784625242606053539273596503127429048144820216605762640144446786704572632429166351569707758875}{602296426145859416713001130352531947790182497390099851611140188888104022984965098109359241391046208} a^{3} + \frac{6056537175978375645984070324267185311023361758880208423054979049825079474438711708208394815}{108185470503766740595280680426977148856794942391766261166832970357778285645279076002829263776} a^{2} + \frac{22979750011697208466537294797620518133296645242806910678782697473704840202051629851518322527}{54092735251883370297640340213488574428397471195883130583416485178889142822639538001414631888} a + \frac{462154666210223385164581350118072771063884529688965701499876854146366524624393430496613061}{13523183812970842574410085053372143607099367798970782645854121294722285705659884500353657972}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1044636921100000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 279936 |
| The 174 conjugacy class representatives for t18n874 are not computed |
| Character table for t18n874 is not computed |
Intermediate fields
| \(\Q(\sqrt{37}) \), 3.3.148.1 x3, 6.6.810448.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.12.12.28 | $x^{12} - x^{10} + 2 x^{8} - x^{6} - 2 x^{4} + 3 x^{2} + 1$ | $6$ | $2$ | $12$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $3$ | 3.9.12.20 | $x^{9} + 6 x^{6} + 54 x^{2} + 27$ | $3$ | $3$ | $12$ | $(C_3^2:C_3):C_2$ | $[2, 2, 2]^{6}$ |
| 3.9.12.8 | $x^{9} + 12 x^{6} + 54 x^{2} + 54$ | $3$ | $3$ | $12$ | $C_3 \wr C_3 $ | $[2, 2, 2]^{3}$ | |
| 37 | Data not computed | ||||||
| $179$ | 179.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 179.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 179.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 179.6.4.2 | $x^{6} - 179 x^{3} + 224287$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 179.6.0.1 | $x^{6} - x + 50$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 1433 | Data not computed | ||||||
| 15551 | Data not computed | ||||||