Normalized defining polynomial
\( x^{18} - 6 x^{17} - 18 x^{16} + 178 x^{15} - 126 x^{14} - 1323 x^{13} + 2437 x^{12} + 2646 x^{11} - 8874 x^{10} + 1316 x^{9} + 10665 x^{8} - 6174 x^{7} - 4241 x^{6} + 4158 x^{5} - 84 x^{4} - 765 x^{3} + 243 x^{2} - 27 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(203412153331596396123869184=2^{12}\cdot 3^{21}\cdot 7^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{13} - \frac{2}{5} a^{12} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{14} - \frac{2}{5} a^{13} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{157696981106818085} a^{17} + \frac{1745285859036472}{157696981106818085} a^{16} - \frac{10077962379774386}{157696981106818085} a^{15} - \frac{70682963858248184}{157696981106818085} a^{14} + \frac{10614083029818256}{157696981106818085} a^{13} - \frac{54447318681811563}{157696981106818085} a^{12} + \frac{20204041698890811}{157696981106818085} a^{11} + \frac{76219428119689271}{157696981106818085} a^{10} + \frac{16092472781310263}{157696981106818085} a^{9} - \frac{25678576267964801}{157696981106818085} a^{8} - \frac{77396383557634412}{157696981106818085} a^{7} - \frac{2448562140751291}{31539396221363617} a^{6} - \frac{10646525247676599}{157696981106818085} a^{5} - \frac{7186074568540490}{31539396221363617} a^{4} + \frac{68066917032892159}{157696981106818085} a^{3} + \frac{52355348767006797}{157696981106818085} a^{2} + \frac{700275840136333}{157696981106818085} a - \frac{7749310029014120}{31539396221363617}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21322924.4726 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), 3.3.756.1 x3, \(\Q(\zeta_{7})^+\), 6.6.12002256.1, 6.6.588110544.1 x2, \(\Q(\zeta_{21})^+\), 9.9.1037426999616.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |