Normalized defining polynomial
\( x^{18} - 27 x^{16} + 270 x^{14} - 1269 x^{12} + 3042 x^{10} - 76 x^{9} - 3888 x^{8} + 261 x^{7} + 2601 x^{6} - 297 x^{5} - 810 x^{4} + 120 x^{3} + 81 x^{2} - 9 x - 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1923380668327365689220703125=3^{44}\cdot 5^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(135=3^{3}\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{135}(64,·)$, $\chi_{135}(1,·)$, $\chi_{135}(4,·)$, $\chi_{135}(76,·)$, $\chi_{135}(79,·)$, $\chi_{135}(16,·)$, $\chi_{135}(19,·)$, $\chi_{135}(91,·)$, $\chi_{135}(94,·)$, $\chi_{135}(31,·)$, $\chi_{135}(34,·)$, $\chi_{135}(106,·)$, $\chi_{135}(109,·)$, $\chi_{135}(46,·)$, $\chi_{135}(49,·)$, $\chi_{135}(121,·)$, $\chi_{135}(124,·)$, $\chi_{135}(61,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{252470006105599} a^{17} - \frac{125005862637351}{252470006105599} a^{16} - \frac{55802239894318}{252470006105599} a^{15} + \frac{20683531428349}{252470006105599} a^{14} + \frac{75527407604533}{252470006105599} a^{13} + \frac{3308342371889}{252470006105599} a^{12} + \frac{59644436246245}{252470006105599} a^{11} + \frac{3762488467568}{252470006105599} a^{10} - \frac{125164617995790}{252470006105599} a^{9} - \frac{30792598734353}{252470006105599} a^{8} + \frac{99294107283645}{252470006105599} a^{7} - \frac{103580502572143}{252470006105599} a^{6} - \frac{79925047077669}{252470006105599} a^{5} - \frac{114505757343394}{252470006105599} a^{4} - \frac{39216739194526}{252470006105599} a^{3} - \frac{87257331108262}{252470006105599} a^{2} + \frac{15847820505903}{252470006105599} a + \frac{97497629787280}{252470006105599}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49974435.7673 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{9})^+\), 6.6.820125.1, \(\Q(\zeta_{27})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $18$ | R | R | $18$ | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | $18$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||