Normalized defining polynomial
\( x^{18} - 4 x^{17} - 78 x^{16} + 284 x^{15} + 2310 x^{14} - 7399 x^{13} - 33669 x^{12} + 90384 x^{11} + 267586 x^{10} - 554078 x^{9} - 1204383 x^{8} + 1654492 x^{7} + 3046555 x^{6} - 2007012 x^{5} - 3972458 x^{4} + 183745 x^{3} + 1953503 x^{2} + 824787 x + 100591 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[18, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(191472242557130561520018973937664=2^{12}\cdot 3^{9}\cdot 7^{15}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{13} a^{15} + \frac{3}{13} a^{14} + \frac{1}{13} a^{13} - \frac{1}{13} a^{12} + \frac{1}{13} a^{11} + \frac{1}{13} a^{10} - \frac{1}{13} a^{9} - \frac{4}{13} a^{8} + \frac{1}{13} a^{7} + \frac{2}{13} a^{6} + \frac{1}{13} a^{5} + \frac{3}{13} a^{4} - \frac{3}{13} a^{3} + \frac{5}{13} a^{2} + \frac{1}{13} a - \frac{5}{13}$, $\frac{1}{65} a^{16} + \frac{2}{65} a^{15} - \frac{3}{13} a^{14} + \frac{11}{65} a^{13} - \frac{24}{65} a^{12} + \frac{1}{5} a^{11} - \frac{3}{13} a^{10} - \frac{3}{65} a^{9} + \frac{18}{65} a^{8} + \frac{27}{65} a^{7} + \frac{12}{65} a^{6} - \frac{24}{65} a^{5} - \frac{32}{65} a^{4} - \frac{18}{65} a^{3} + \frac{22}{65} a^{2} - \frac{6}{65} a - \frac{21}{65}$, $\frac{1}{6228235207132027323989443969748795791960787525} a^{17} - \frac{39691375069746196977860107354495389528923386}{6228235207132027323989443969748795791960787525} a^{16} - \frac{35341817380907791408200142274082001922764451}{6228235207132027323989443969748795791960787525} a^{15} + \frac{219316618291967324416054229091646488972356032}{479095015933232871076111074596061214766214425} a^{14} - \frac{1187905586221996606523090441169574124997981527}{6228235207132027323989443969748795791960787525} a^{13} + \frac{567122066753403391010781078677330897248199653}{1245647041426405464797888793949759158392157505} a^{12} + \frac{1440789384306212038656293841936588079424137226}{6228235207132027323989443969748795791960787525} a^{11} + \frac{1717845892527832298168203131774356040768122652}{6228235207132027323989443969748795791960787525} a^{10} + \frac{357183921078660728216502499296462239550516547}{6228235207132027323989443969748795791960787525} a^{9} - \frac{31033632420191456441911309812841444801811049}{144842679235628542418359162087181297487460175} a^{8} - \frac{750304091004899787098558082992085761033990584}{6228235207132027323989443969748795791960787525} a^{7} + \frac{473672485641649565823353334457654141766584051}{1245647041426405464797888793949759158392157505} a^{6} + \frac{174182637228198563853654211135137003434159894}{1245647041426405464797888793949759158392157505} a^{5} - \frac{37178962543650236232305674069936378748041454}{479095015933232871076111074596061214766214425} a^{4} - \frac{1846214579176706441607294099553857277824484669}{6228235207132027323989443969748795791960787525} a^{3} + \frac{110352911361054622344943180289224158478332831}{479095015933232871076111074596061214766214425} a^{2} - \frac{637256359078526845839212675107136638958423443}{6228235207132027323989443969748795791960787525} a + \frac{1091488137070175267534920262420984570892359738}{6228235207132027323989443969748795791960787525}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $17$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32570423525.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$He_3:C_2$ (as 18T20):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $He_3:C_2$ |
| Character table for $He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{21})^+\), 9.9.1006519075055424.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.6.4.1 | $x^{6} + 232 x^{3} + 22707$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 29.6.4.1 | $x^{6} + 232 x^{3} + 22707$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |